Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (2): 114-122.DOI: 10.3969/j.issn.1001-909X.2023.02.010
• Original article • Previous Articles Next Articles
WANG Jinguo1,2,3(), SHENG Yangjie1,2,3,4, WANG Xukun1,2,3, NI Jiaxuan1,2,3, WU Hui1,2,3, LIU Weiguo5, ZHOU Wei1,2,3,5,*()
Received:
2022-04-02
Revised:
2022-06-29
Online:
2023-06-15
Published:
2023-07-27
CLC Number:
WANG Jinguo, SHENG Yangjie, WANG Xukun, NI Jiaxuan, WU Hui, LIU Weiguo, ZHOU Wei. Effects of CO2 and dissolved inorganic phosphate on the growth and photosynthetic performance of Ulva prolifera seedlings[J]. Journal of Marine Sciences, 2023, 41(2): 114-122.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2023.02.010
处理组 | pH | pCO2/μatm | DIC/(μmol·kg-1) | HC | C | CO2/(μmol·kg-1) | TA/(μmol·kg-1) |
---|---|---|---|---|---|---|---|
LCLP | 8.20±0.01a | 382.36±13.07a | 2 002.85±19.95a | 1 817.53±21.22a | 172.70±2.17a | 12.26±0.43a | 2 251.60±16.65a |
LCMP | 8.18±0.02a | 408.82±24.69a | 2 036.32±33.82a | 1 854.54±36.41a | 168.29±3.41a | 13.49±0.81a | 2 276.87±27.12a |
LCHP | 8.19±0.02a | 395.95±20.66a | 2 022.36±37.76a | 1 838.52±36.85a | 170.77±5.93a | 13.07±0.68a | 2 267.25±38.27a |
HCLP | 7.85±0.00b | 931.28±15.51b | 2 092.77±34.85b | 1 978.08±32.94b | 83.96±1.40b | 30.73±0.51b | 2 194.97±35.74a |
HCMP | 7.86±0.01b | 908.84±38.05b | 2 106.87±46.75ab | 1 989.78±44.75b | 87.09±2.30b | 30.00±1.26b | 2 214.06±46.52a |
HCHP | 7.85±0.03b | 940.03±44.52b | 2 111.23±37.31b | 1 995.36±32.66b | 84.84±6.29b | 31.02±1.47b | 2 214.06±46.52a |
Tab.1 Parameters of seawater carbonate system under different treatments
处理组 | pH | pCO2/μatm | DIC/(μmol·kg-1) | HC | C | CO2/(μmol·kg-1) | TA/(μmol·kg-1) |
---|---|---|---|---|---|---|---|
LCLP | 8.20±0.01a | 382.36±13.07a | 2 002.85±19.95a | 1 817.53±21.22a | 172.70±2.17a | 12.26±0.43a | 2 251.60±16.65a |
LCMP | 8.18±0.02a | 408.82±24.69a | 2 036.32±33.82a | 1 854.54±36.41a | 168.29±3.41a | 13.49±0.81a | 2 276.87±27.12a |
LCHP | 8.19±0.02a | 395.95±20.66a | 2 022.36±37.76a | 1 838.52±36.85a | 170.77±5.93a | 13.07±0.68a | 2 267.25±38.27a |
HCLP | 7.85±0.00b | 931.28±15.51b | 2 092.77±34.85b | 1 978.08±32.94b | 83.96±1.40b | 30.73±0.51b | 2 194.97±35.74a |
HCMP | 7.86±0.01b | 908.84±38.05b | 2 106.87±46.75ab | 1 989.78±44.75b | 87.09±2.30b | 30.00±1.26b | 2 214.06±46.52a |
HCHP | 7.85±0.03b | 940.03±44.52b | 2 111.23±37.31b | 1 995.36±32.66b | 84.84±6.29b | 31.02±1.47b | 2 214.06±46.52a |
Fig.1 Relative growth rate of U.prolifera seedlings under different treatments (Different lowercase letters represent significant differences among different treatments under LC, p<0.05), and different capital letters represent significant differences among different treatments under HC, p<0.05; Asterisk represents significant differences between LC and HC within a DIP treatment,p<0.05.)
Fig.2 Effective quantum yield of U.prolifera seedlings under different treatments (Different lowercase letters represent significant differences among different treatments under LC, p<0.05), and different capital letters represent significant differences among different treatments under HC, p<0.05.)
处理组 | 最大相对光合电子传递速率 (rETRmax)/(μmol·m-2·s-1) | 光能利用 效率(α) | 饱和光强(Ek)/ (μmol·m-2·s-1) |
---|---|---|---|
LCLP | 61.89±3.12a | 0.29±0.02a | 211.38±6.35a |
LCMP | 92.63±1.93b | 0.31±0.02ab | 302.23±23.16b |
LCHP | 105.88±2.93c | 0.33±0.02b | 317.11±13.97b |
HCLP | 48.39±1.28A* | 0.32±0.02A | 153.20±11.79A* |
HCMP | 92.63±7.87B | 0.34±0.01A | 274.33±15.32B |
HCHP | 104.79±6.13B | 0.35±0.03A | 303.19±38.09B |
Tab.2 The maximum rETR (rETRmax), light utilization efficiency (α) and saturation light intensity (Ek) of U.prolifera seedlings under different treatments
处理组 | 最大相对光合电子传递速率 (rETRmax)/(μmol·m-2·s-1) | 光能利用 效率(α) | 饱和光强(Ek)/ (μmol·m-2·s-1) |
---|---|---|---|
LCLP | 61.89±3.12a | 0.29±0.02a | 211.38±6.35a |
LCMP | 92.63±1.93b | 0.31±0.02ab | 302.23±23.16b |
LCHP | 105.88±2.93c | 0.33±0.02b | 317.11±13.97b |
HCLP | 48.39±1.28A* | 0.32±0.02A | 153.20±11.79A* |
HCMP | 92.63±7.87B | 0.34±0.01A | 274.33±15.32B |
HCHP | 104.79±6.13B | 0.35±0.03A | 303.19±38.09B |
Fig.4 Net photosynthetic rate (a) and respiration rate (b) of U.prolifera seedlings under different treatments (Different lowercase letters represent significant differences among different treatments under LC, p<0.05, and different capital letters represent significant differences among different treatments under HC, p<0.05; Asterisk represents significant differences between LC and HC within a DIP treatment, p<0.05.)
Fig.5 The contents of chlorophyll a (a), chlorophyll b (b) and carotenoids (c) contents in U.prolifera seedlings under different treatments (Different lowercase letters represent significant differences among different treatments under LC, p<0.05, and different capital letters represent significant differences among different treatments under HC, p<0.05; Asterisk represents significant differences between LC and HC within a DIP treatment, p<0.05.)
[1] |
SMITH S V. Marine macrophytes as a global carbon sink[J]. Science, 1981, 211(4484): 838-840.
DOI PMID |
[2] | 杨宇峰, 宋金明, 林小涛, 等. 大型海藻栽培及其在近海环境的生态作用[J]. 海洋环境科学, 2005, 24(3):77-80. |
YANG Y F, SONG J M, LIN X T, et al. Seaweed cultivation and its ecological roles in coastal waters[J]. Marine Environ-mental Science, 2005, 24(3): 77-80. | |
[3] |
GAO G, CLARE A S, ROSE C, et al. Intrinsic and extrinsic control of reproduction in the green tide-forming alga,Ulva rigida[J]. Environmental and Experimental Botany, 2017, 139: 14-22.
DOI URL |
[4] |
SMETACEK V, ZINGONE A. Green and golden seaweed tides on the rise[J]. Nature, 2013, 504(7478): 84-88.
DOI |
[5] | 沈颂东. “微观繁殖体”溯源[J]. 海洋与湖沼, 2022, 53(1):1-7. |
SHEN S D. Brief introduction of micropropagule[J]. Ocea-nologia et Limnologia Sinica, 2022, 53(1): 1-7. | |
[6] |
SABINE C L, FEELY R A, GRUBER N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682): 367-371.
DOI PMID |
[7] |
CALDEIRA K, WICKETT M E. Oceanography: Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365.
DOI |
[8] |
CHEN B B, LIN L D, MA Z L, et al. Carbon and nitrogen accumulation and interspecific competition in two algae species, Pyropia haitanensis and Ulva lactuca, under ocean acidification conditions[J]. Aquaculture International, 2019, 27(3): 721-733.
DOI |
[9] |
GAO G, BEARDALL J, BAO M L, et al. Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga Ulva linza[J]. Biogeosciences, 2018, 15(11): 3409-3420.
DOI URL |
[10] |
YUE F R, GAO G, MA J, et al. Future CO2-induced seawater acidification mediates the physiological performance of a green alga Ulva linza in different photoperiods[J]. PeerJ, 2019, 7: e7048.
DOI URL |
[11] | GAO G, QU L M, XU T P, et al. Future CO2-induced ocean acidification enhances resilience of a green tide alga to low-salinity stress[J]. ICES Journal of Marine Science, 2019, 76(7): 2437-2445. |
[12] |
BARAKAT K M, EL-SAYED H S, KHAIRY H M, et al. Effects of ocean acidification on the growth and biochemical composition of a green alga (Ulva fasciata) and its asso-ciated microbiota[J]. Saudi Journal of Biological Sciences, 2021, 28(9): 5106-5114.
DOI URL |
[13] |
ZHOU W, WU H, HUANG J J, et al. Elevated-CO2 and nutrient limitation synergistically reduce the growth and photosynthetic performances of a commercial macroalga Gracilariopsis lemaneiformis[J]. Aquaculture, 2022, 550:737878.
DOI URL |
[14] |
GUTOW L, RAHMAN M M, BARTL K, et al. Ocean acidification affects growth but not nutritional quality of the seaweed Fucus vesiculosus (Phaeophyceae, Fucales)[J]. Journal of Experimental Marine Biology and Ecology, 2014, 453: 84-90.
DOI URL |
[15] |
JOHNSON M D, PRICE N N, SMITH J E. Contrasting effects of ocean acidification on tropical fleshy and calcareous algae[J]. PeerJ, 2014, 2: e411.
DOI URL |
[16] |
KANG E J, HAN A R, KIM J H, et al. Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming[J]. Science of the Total Environment, 2021, 769: 144443.
DOI URL |
[17] |
GRABA-LANDRY A, HOEY A S, MATLEY J K, et al. Ocean warming has greater and more consistent negative effects than ocean acidification on the growth and health of subtropical macroalgae[J]. Marine Ecology Progress Series, 2018, 595: 55-69.
DOI URL |
[18] |
XU J T, GAO K S. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga[J]. Plant Physiology, 2012, 160(4): 1762-1769.
DOI PMID |
[19] |
GAO G, LIU Y M, LI X S, et al. An ocean acidification acclimatised green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress[J]. PLoS One, 2016, 11(12): e0169040.
DOI URL |
[20] |
GAO G, CLARE A S, ROSE C, et al. Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios[J]. Marine Pollution Bulletin, 2017, 114(1): 439-447.
DOI PMID |
[21] |
XU Z G, GAO G, XU J T, et al. Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment[J]. Biogeosciences, 2017, 14(3): 671-681.
DOI URL |
[22] |
LI S X, YU K F, HUO Y Z, et al. Effects of nitrogen and phosphorus enrichment on growth and photosynthetic assimilation of carbon in a green tide-forming species (Ulva prolifera) in the Yellow Sea[J]. Hydrobiologia, 2016, 776(1): 161-171.
DOI URL |
[23] |
CHU Y Y, LIU Y, LI J Y, et al. Effects of elevated pCO2 and nutrient enrichment on the growth, photosynthesis, and biochemical compositions of the brown alga Saccharina japonica (Laminariaceae, Phaeophyta)[J]. PeerJ, 2019, 7: e8040.
DOI URL |
[24] | VILLARES R, PUENTE X, CARBALLEIRA A. Nitrogen and phosphorus in Ulva sp. in the Galician Rias Bajas (northwest Spain): Seasonal fluctuations and influence on growth[J]. Boletin-Instituto Espanol de Oceanografia, 1999, 15(1-4): 337-341. |
[25] |
TEICHBERG M, FOX S E, OLSEN Y S, et al. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: Nutrient enrichment experiments with Ulva spp.[J]. Global Change Biology, 2010, 16(9): 2624-2637.
DOI URL |
[26] |
CHEN H H, FENG X Q, JIANG M J, et al. Estimating the ploidy of Gracilariopsis lemaneiformis at both the cellular and genomic level[J]. Journal of Phycology, 2020, 56(5): 1339-1348.
DOI URL |
[27] |
EILERS P H C, PEETERS J C H. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton[J]. Ecological Modelling, 1988, 42(3/4): 199-215.
DOI URL |
[28] |
GAO G, LIU Y M, LI X S, et al. Expected CO2-induced ocean acidification modulates copper toxicity in the green tide alga Ulva prolifera[J]. Environmental and Experimental Botany, 2017, 135: 63-72.
DOI URL |
[29] |
WELLBURN A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology, 1994, 144(3): 307-313.
DOI URL |
[30] |
YOUNG C S, GOBLER C J. Ocean acidification accelerates the growth of two bloom-forming macroalgae[J]. PLoS One, 2016, 11(5): e0155152.
DOI URL |
[31] |
GIORDANO M, BEARDALL J, RAVEN J A. CO2 concen-trating mechanisms in algae: Mechanisms, environmental modulation, and evolution[J]. Annual Review of Plant Biology, 2005, 56: 99-131.
DOI URL |
[32] |
RAVEN J A, BEARDALL J, SÁNCHEZ-BARACALDO P. The possible evolution and future of CO2—concentrating mechanisms[J]. Journal of Experimental Botany, 2017, 68(14): 3701-3716.
DOI URL |
[33] |
LI Y H, ZHONG J L, ZHENG M S, et al. Photoperiod mediates the effects of elevated CO2 on the growth and physiological performance in the green tide alga Ulva prolifera[J]. Marine Environmental Research, 2018, 141: 24-29.
DOI URL |
[34] |
IRIHIMOVITCH V, YEHUDAI-RESHEFF S. Phosphate and sulfur limitation responses in the chloroplast of Chlamy-domonas reinhardtii[J]. FEMS Microbiology Letters, 2008, 283(1): 1-8.
DOI URL |
[35] |
ZER H, OHAD I. Light, redox state, thylakoid-protein phosphorylation and signaling gene expression[J]. Trends in Biochemical Sciences, 2003, 28(9): 467-470.
DOI PMID |
[36] |
FIGUEROA F L, ISRAEL A, NEORI A, et al. Effects of nutrient supply on photosynthesis and pigmentation in Ulva lactuca (Chlorophyta): Responses to short-term stress[J]. Aquatic Biology, 2009, 7: 173-183.
DOI URL |
[37] |
REIDENBACH L B, FERNANDEZ P A, LEAL P P, et al. Growth, ammonium metabolism, and photosynthetic properties of Ulva australis (Chlorophyta) under decreasing pH and ammonium enrichment[J]. PLoS One, 2017, 12(11):e0188389.
DOI URL |
[38] |
MA J, WANG W, LIU X Y, et al. Zinc toxicity alters the photosynthetic response of red alga Pyropia yezoensis to ocean acidification[J]. Environmental Science and Pollution Research, 2020, 27(3): 3202-3212.
DOI |
[1] | YU Lei, LI Sanzhong, SUO Yanhui, WANG Xiujuan. Carbon cycling in costal ocean and CO2 negative emissions [J]. Journal of Marine Sciences, 2023, 41(1): 14-25. |
[2] | LIU Tingyu, BAI Yan, ZHU Bozhong, LI Teng, GONG Fang. Satellite retrieval algorithm of high spatial resolution sea surface partial pressure of CO2: Application of machine learning in Xiangshan Bay in autumn [J]. Journal of Marine Sciences, 2023, 41(1): 82-95. |
[3] | MIAO Yanyi, WANG Bin, LI Dewang, JIN Haiyan, JIANG Zhibin, MA Xiao, YU Peisong, CHEN Jianfang, WANG Junyang. The effect of strong wind on air-sea CO2 flux in the Changjiang River Estuary and its adjacent sea areas [J]. Journal of Marine Sciences, 2020, 38(1): 42-49. |
[4] | ZHONG Jia-li, LI Ya-he, ZHENG Ming-shan, ZANG Ru, XU Nian-jun. Effects of different hypersalinity models on the photo-physiological performances and related gene expression in Ulva prolifera [J]. Journal of Marine Sciences, 2019, 37(2): 72-80. |
[5] | LAI Wen-yi, LOU Ya-min, XU Ji-lin, ZHOU Cheng-xu, YAN Xiao-jun. The effect of polyamines on the growth of diatoms [J]. Journal of Marine Sciences, 2018, 36(3): 96-100. |
[6] | LÜ Hang-yu, BAI Yan, LI Qian, JIANG Hong. Satellite remote sensing retrieval of aquatic pCO2 in summer in the Pearl River Estuary [J]. Journal of Marine Sciences, 2018, 36(2): 1-11. |
[7] | HUANG Shi-yu, ZHANG Li-li. The effects of solvend from abalone or oyster visceral mass on Isochrysis galbana incubation [J]. Journal of Marine Sciences, 2015, 33(4): 70-76. |
[8] | LI Yi, HE Hai-lun, CHEN Da-ke. Air-sea CO2 flux in the East China Sea estimated by empirical formula based on the parameters of [J]. Journal of Marine Sciences, 2012, 30(3): 30-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||