[1] |
PIERRE F, JONES MATTHEW W, MICHAEL O, et al. Global carbon budget 2021[J]. Earth System Science Data, 2022, 14(4): 1917-2005.
DOI
URL
|
[2] |
焦念志. 研发海洋“负排放”技术支撑国家“碳中和”需求[J]. 中国科学院院刊, 2021, 36(2):179-187.
|
|
JIAO N Z. Developing ocean negative carbon emission technology to support national carbon neutralization[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(2): 179-187.
|
[3] |
DAI M H, LU Z M, ZHAI W D, et al. Diurnal variations of surface seawater pCO2 in contrasting coastal environments[J]. Limnology and Oceanography, 2009, 54(3): 735-745.
DOI
URL
|
[4] |
GRUBER N. Carbon at the coastal interface[J]. Nature, 2015, 517(7533): 148-149.
DOI
|
[5] |
CHAI F, JOHNSON K S, CLAUSTRE H, et al. Monitoring ocean biogeochemistry with autonomous platforms[J]. Nature Reviews Earth & Environment, 2020, 1(6): 315-326.
|
[6] |
JIANG L Q, CAI W J, WANNINKHOF R, et al. Air-sea CO2 fluxes on the U.S. South Atlantic Bight: Spatial and seasonal variability[J]. Journal of Geophysical Research, 2008, 113(C7): C07019.
|
[7] |
FASSBENDER A J, SABINE C L, CRONIN M F, et al. Mixed-layer carbon cycling at the Kuroshio extension observatory[J]. Global Biogeochemical Cycles, 2017, 31(2): 272-288.
DOI
URL
|
[8] |
SUTTON A J, SABINE C L, MAENNER-JONES S, et al. A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system[J]. Earth System Science Data, 2014, 6(2): 353-366.
DOI
URL
|
[9] |
SUTTON A J, FEELY R A, MAENNER-JONES S, et al. Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends[J]. Earth System Science Data, 2019, 11(1): 421-439.
DOI
URL
|
[10] |
XUE L A, CAI W J, HU X P, et al. Sea surface carbon dioxide at the Georgia time series site (2006-2007): Air-sea flux and controlling processes[J]. Progress in Oceanography, 2016, 140: 14-26.
DOI
URL
|
[11] |
WU Y X, DAI M H, GUO X H, et al. High-frequency time-series autonomous observations of sea surface pCO2 and pH[J]. Limnology and Oceanography, 2021, 66(3): 588-606.
DOI
URL
|
[12] |
REIMER J J, CAI W J, XUE L A, et al. Time series pCO2 at a coastal mooring: Internal consistency, seasonal cycles, and interannual variability[J]. Continental Shelf Research, 2017, 145: 95-108.
DOI
URL
|
[13] |
ZHANG L J, XUE M, LIU Q Z. Distribution and seasonal variation in the partial pressure of CO2 during autumn and winter in Jiaozhou Bay, a region of high urbanization[J]. Marine Pollution Bulletin, 2012, 64(1): 56-65.
DOI
URL
|
[14] |
SONG J M, LI X G, NIU L F, et al. Role of the Jiaozhou Bay as a source/sink of CO2 over a seasonal cycle[J]. Scientia Marina, 2007, 71(3): 441-450.
DOI
URL
|
[15] |
LIU X M, WANG M H. Filling the gaps of missing data in the merged VIIRS SNPP/NOAA-20 ocean color product using the DINEOF method[J]. Remote Sensing, 2019, 11(2): 178.
DOI
URL
|
[16] |
GARCIA H E, GORDON L I. Oxygen solubility in seawater: Better fitting equations[J]. Limnology and Oceanography, 1992, 37(6): 1307-1312.
DOI
URL
|
[17] |
MOLTENI F, BUIZZA R, PALMER T N, et al. The ECMWF ensemble prediction system: Methodology and validation[J]. Quarterly Journal of the Royal Meteorological Society, 1996, 122(529): 73-119.
DOI
URL
|
[18] |
PFEIL B, OLSEN A, BAKKER D C E, et al. A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT)[J]. Earth System Science Data, 2013, 5(1): 125-143.
DOI
URL
|
[19] |
WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean revisited[J]. Limnology and Oceanography: Methods, 2014, 12(6): 351-362.
DOI
URL
|
[20] |
陈永利, 赵永平, 张必成, 等. 海上不同高度风速换算关系的研究[J]. 海洋科学, 1989(3):27-31.
|
|
CHEN Y L, ZHAO Y P, ZHANG B C, et al. The study of the relations of wind velocity at different heights over the sea[J]. Marine Sciences, 1989(3): 27-31.
|
[21] |
JÄHNE B, HEINZ G, DIETRICH W. Measurement of the diffusion coefficients of sparingly soluble gases in water[J]. Journal of Geophysical Research, 1987, 92(C10): 10767.
DOI
URL
|
[22] |
TAKAHASHI T, OLAFSSON J, GODDARD J G, et al. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study[J]. Global Biogeo-chemical Cycles, 1993, 7(4): 843-878.
|
[23] |
GAC J P, MARREC P, CARIOU T, et al. Cardinal buoys: An opportunity for the study of air-sea CO2 fluxes in coastal ecosystems[J]. Frontiers in Marine Science, 2020, 7: 712.
DOI
URL
|
[24] |
LEINWEBER A, GRUBER N, FRENZEL H, et al. Diurnal carbon cycling in the surface ocean and lower atmosphere of Santa Monica Bay, California[J]. Geophysical Research Letters, 2009, 36(8): L08601.
|
[25] |
LI D W, CHEN J F, NI X B, et al. Effects of biological production and vertical mixing on sea surface pCO2 variations in the Changjiang River plume during early autumn: A buoy-based time series study[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6156-6173.
DOI
URL
|