Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (4): 32-45.DOI: 10.3969-j.issn.1001-909X.2023.04.004
Previous Articles Next Articles
ZHANG Liangbin1(), QU Ke1,2,3,*(), HUANG Jingxuan1, WANG Xu1, GUO Lei1
Received:
2023-02-10
Revised:
2023-10-23
Online:
2023-12-15
Published:
2024-01-30
CLC Number:
ZHANG Liangbin, QU Ke, HUANG Jingxuan, WANG Xu, GUO Lei. Numerical simulation study on influences of onshore wind on overtopping characteristics of solitary wave under coastal seawall[J]. Journal of Marine Sciences, 2023, 41(4): 32-45.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969-j.issn.1001-909X.2023.04.004
工况 | H/m | AC/m | cotα | cotβ | 破碎类型 | 工况 | H/m | AC/m | cotα | cotβ | 破碎类型 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 23 | 4 | 0.10 | 0.067 | 20 | 2 | 卷破波 |
2 | 1 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 24 | 0 | 0.10 | 0.117 | 10 | 2 | 激破波 |
3 | 2 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 25 | 4 | 0.10 | 0.117 | 10 | 2 | 激破波 |
4 | 3 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 26 | 0 | 0.10 | 0.117 | 15 | 2 | 卷破波 |
5 | 4 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 27 | 4 | 0.10 | 0.117 | 15 | 2 | 卷破波 |
6 | 5 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 28 | 0 | 0.10 | 0.117 | 20 | 2 | 卷破波 |
7 | 6 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 29 | 4 | 0.10 | 0.117 | 20 | 2 | 卷破波 |
8 | 0 | 0.05 | 0.117 | 20 | 2 | 卷破波 | 30 | 0 | 0.10 | 0.117 | 25 | 2 | 卷破波 |
9 | 4 | 0.05 | 0.117 | 20 | 2 | 卷破波 | 31 | 4 | 0.10 | 0.117 | 25 | 2 | 卷破波 |
10 | 0 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 32 | 0 | 0.10 | 0.117 | 30 | 2 | 卷破波 |
11 | 4 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 33 | 4 | 0.10 | 0.117 | 30 | 2 | 卷破波 |
12 | 0 | 0.15 | 0.117 | 20 | 2 | 卷破波 | 34 | 0 | 0.10 | 0.117 | 20 | 0 | 卷破波 |
13 | 4 | 0.15 | 0.117 | 20 | 2 | 卷破波 | 35 | 4 | 0.10 | 0.117 | 20 | 0 | 卷破波 |
14 | 0 | 0.20 | 0.117 | 20 | 2 | 卷破波 | 36 | 0 | 0.10 | 0.117 | 20 | 1 | 卷破波 |
15 | 4 | 0.20 | 0.117 | 20 | 2 | 卷破波 | 37 | 4 | 0.10 | 0.117 | 20 | 1 | 卷破波 |
16 | 0 | 0.10 | 0.217 | 20 | 2 | 卷破波 | 38 | 0 | 0.10 | 0.117 | 20 | 2 | 卷破波 |
17 | 4 | 0.10 | 0.217 | 20 | 2 | 卷破波 | 39 | 4 | 0.10 | 0.117 | 20 | 2 | 卷破波 |
18 | 0 | 0.10 | 0.167 | 20 | 2 | 卷破波 | 40 | 0 | 0.10 | 0.117 | 20 | 3 | 卷破波 |
19 | 4 | 0.10 | 0.167 | 20 | 2 | 卷破波 | 41 | 4 | 0.10 | 0.117 | 20 | 3 | 卷破波 |
20 | 0 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 42 | 0 | 0.10 | 0.117 | 20 | 4 | 卷破波 |
21 | 4 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 43 | 4 | 0.10 | 0.117 | 20 | 4 | 卷破波 |
22 | 0 | 0.10 | 0.067 | 20 | 2 | 卷破波 |
Tab.1 Parameter setup of numerical simulation and wave breaking types
工况 | H/m | AC/m | cotα | cotβ | 破碎类型 | 工况 | H/m | AC/m | cotα | cotβ | 破碎类型 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 23 | 4 | 0.10 | 0.067 | 20 | 2 | 卷破波 |
2 | 1 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 24 | 0 | 0.10 | 0.117 | 10 | 2 | 激破波 |
3 | 2 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 25 | 4 | 0.10 | 0.117 | 10 | 2 | 激破波 |
4 | 3 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 26 | 0 | 0.10 | 0.117 | 15 | 2 | 卷破波 |
5 | 4 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 27 | 4 | 0.10 | 0.117 | 15 | 2 | 卷破波 |
6 | 5 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 28 | 0 | 0.10 | 0.117 | 20 | 2 | 卷破波 |
7 | 6 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 29 | 4 | 0.10 | 0.117 | 20 | 2 | 卷破波 |
8 | 0 | 0.05 | 0.117 | 20 | 2 | 卷破波 | 30 | 0 | 0.10 | 0.117 | 25 | 2 | 卷破波 |
9 | 4 | 0.05 | 0.117 | 20 | 2 | 卷破波 | 31 | 4 | 0.10 | 0.117 | 25 | 2 | 卷破波 |
10 | 0 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 32 | 0 | 0.10 | 0.117 | 30 | 2 | 卷破波 |
11 | 4 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 33 | 4 | 0.10 | 0.117 | 30 | 2 | 卷破波 |
12 | 0 | 0.15 | 0.117 | 20 | 2 | 卷破波 | 34 | 0 | 0.10 | 0.117 | 20 | 0 | 卷破波 |
13 | 4 | 0.15 | 0.117 | 20 | 2 | 卷破波 | 35 | 4 | 0.10 | 0.117 | 20 | 0 | 卷破波 |
14 | 0 | 0.20 | 0.117 | 20 | 2 | 卷破波 | 36 | 0 | 0.10 | 0.117 | 20 | 1 | 卷破波 |
15 | 4 | 0.20 | 0.117 | 20 | 2 | 卷破波 | 37 | 4 | 0.10 | 0.117 | 20 | 1 | 卷破波 |
16 | 0 | 0.10 | 0.217 | 20 | 2 | 卷破波 | 38 | 0 | 0.10 | 0.117 | 20 | 2 | 卷破波 |
17 | 4 | 0.10 | 0.217 | 20 | 2 | 卷破波 | 39 | 4 | 0.10 | 0.117 | 20 | 2 | 卷破波 |
18 | 0 | 0.10 | 0.167 | 20 | 2 | 卷破波 | 40 | 0 | 0.10 | 0.117 | 20 | 3 | 卷破波 |
19 | 4 | 0.10 | 0.167 | 20 | 2 | 卷破波 | 41 | 4 | 0.10 | 0.117 | 20 | 3 | 卷破波 |
20 | 0 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 42 | 0 | 0.10 | 0.117 | 20 | 4 | 卷破波 |
21 | 4 | 0.10 | 0.117 | 20 | 2 | 卷破波 | 43 | 4 | 0.10 | 0.117 | 20 | 4 | 卷破波 |
22 | 0 | 0.10 | 0.067 | 20 | 2 | 卷破波 |
Fig.16 Maximum value of runup height (a) and maximum overtopping volume (b) of solitary wave in windy and windless conditions under different incident wave heights
Fig.19 Maximum value of runup height (a) and maximum overtopping volume (b) of solitary wave in windy and windless conditions under different dimensionless crest freeboards
Fig.22 Maximum value of runup height (a) and maximum overtopping volume (b) of solitary wave in windy and windless conditions under different beach slopes
Fig.25 Maximum value of runup height (a) and maximum overtopping volume (b) of solitary wave in windy and windless conditions under different seawall slopes
[1] |
CHO Y S, PARK K Y, LIN T H. Run-up heights of nearshore tsunamis based on quadtree grid system[J]. Ocean Engineering, 2004, 31(8/9): 1093-1109.
DOI URL |
[2] |
SYNOLAKIS C E, BERNARD E N. Tsunami science before and beyond Boxing Day 2004[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364(1845): 2231-2265.
DOI URL |
[3] | 姚远, 蔡树群, 王盛安. 海啸波数值模拟的研究现状[J]. 海洋科学进展, 2007, 25(4):487-494. |
YAO Y, CAI S Q, WANG S A. Present status of study on numerical simulation of tsunami wave[J]. Advances in Marine Science, 2007, 25(4): 487-494. | |
[4] |
QU K, REN X Y, KRAATZ S. Numerical investigation of tsunami-like wave hydrodynamic characteristics and its comparison with solitary wave[J]. Applied Ocean Research, 2017, 63: 36-48.
DOI URL |
[5] |
SATO S, OKAYASU A, YEH H, et al. Delayed survey of the 2011 Tohoku tsunami in the former exclusion zone in Minami-soma, Fukushima Prefecture[J]. Pure and Applied Geophysics, 2014, 171(12): 3229-3240.
DOI URL |
[6] |
HARINARAYANA T, HIRATA N. Destructive earthquake and disastrous tsunami in the Indian Ocean, what next?[J]. Gondwana Research, 2005, 8(2): 246-257.
DOI URL |
[7] | MORI N, TAKAHASHI T. The 2011 Tohoku earthquake tsunami joint survey group. Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami[J]. Coastal Engineering Journal, 2012, 54(1): 1250001. |
[8] |
QUIROGA P D, CHEUNG K F. Laboratory study of solitary-wave transformation over bed-form roughness on fringing reefs[J]. Coastal Engineering, 2013, 80: 35-48.
DOI URL |
[9] |
YAO Y, HE F, TANG Z J, et al. A study of tsunami-like solitary wave transformation and run-up over fringing reefs[J]. Ocean Engineering, 2018, 149: 142-155.
DOI URL |
[10] | DE WAAL J P, VAN DER MEER J W. Wave runup and overtopping on coastal structures[C]// American Society of Civil Engineers, Coastal Engineering, 1992, 1993: 1758-1771. |
[11] | HUNT A. Extreme waves, overtopping and flooding at sea defences[D]. Oxford: University of Oxford, 2003. |
[12] |
HSIAO S C, LIN T C. Tsunami-like solitary waves impinging and overtopping an impermeable seawall: Experiment and RANS modeling[J]. Coastal Engineering, 2010, 57(1): 1-18.
DOI URL |
[13] |
LIN T C, HWANG K S, HSIAO S C, et al. An experimental observation of a solitary wave impingement, run-up and overtopping on a seawall[J]. Journal of Hydrodynamics, 2012, 24(1): 76-85.
DOI URL |
[14] | 张金牛, 吴卫, 刘桦, 等. 孤立波作用下斜坡堤越浪量的实验研究[J]. 水动力学研究与进展A辑, 2014, 29(6):656-662. |
ZHANG J N, WU W, LIU H, et al. An experimental study on overtopping of solitary wave against a slope dike[J]. Journal of Hydrodynamics, 2014, 29(6): 656-662. | |
[15] | 曾婧扬, 吴卫, 刘桦. 孤立波斜坡堤堤顶及后坡越浪流数值分析[J]. 力学季刊, 2013, 34(2):181-190. |
ZENG J Y, WU W, LIU H. Numerical analysis of overtopping flow on crest and landward slope of seadike in solitary wave[J]. Chinese Quarterly of Mechanics, 2013, 34(2): 181-190. | |
[16] | 王键, 孙大鹏, 吴浩. 带胸墙斜坡堤越浪量的数值试验研究[J]. 海洋工程, 2018, 36(4):138-146. |
WANG J, SUN D P, WU H. Numerical study on overtopping of sloping breakwater with crown-wall[J]. The Ocean Engineering, 2018, 36(4): 138-146. | |
[17] | 万德成, 戴世强. 孤立波与潜水台阶相互作用的数值模拟[J]. 水动力学研究与进展A辑, 1998, 13(1):95-100. |
WAN D C, DAI S Q. Numerical study of the interaction between a solitary wave and a submerged step obstacle[J]. Chinese Journal of Hydrodynamics, 1998, 13(1): 95-100. | |
[18] | 万德成, 缪国平. 数值模拟波浪翻越直立方柱[J]. 水动力学研究与进展A辑, 1998, 13(3):363-370. |
WAN D C, MIAO G P. Numerical simulations of waves overtopping an erect quadrate column[J]. Chinese Journal of Hydrodynamics, 1998, 13(3): 363-370. | |
[19] |
QU K, WEN B H, REN X Y, et al. Numerical investigation on hydrodynamic load of coastal bridge deck under joint action of solitary wave and wind[J]. Ocean Engineering, 2020, 217: 108037.
DOI URL |
[20] |
WEN B H, QU K, LAN G Y, et al. Numerical study on hydrodynamic characteristics of coastal bridge deck under joint action of regular waves and wind[J]. Ocean Engineering, 2022, 245: 110450.
DOI URL |
[21] | GUO L, QU K, HUANG J X, et al. Numerical study of influences of onshore wind on hydrodynamic processes of solitary wave over fringing reef[J]. Journal of Marine Science and Engineering, 2022: 10: 1645. |
[22] | KUNDU P K, COHEN I M, DOWLING D R. Fluid mechanics[M]. Academic Press, 2015. |
[23] |
ISSA R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Journal of Computational Physics, 1986, 62(1): 40-65.
DOI URL |
[24] | FERZIGER J H, PERIĆ M. Computational methods for fluid dynamics[M]. 3rd, rev. ed. Berlin: Springer 2002. |
[25] | JASAK H. Error analysis and estimation for the finite volume method with applications to fluid flows[D]. London, UK: Imperial College London, 1996. |
[26] |
RHIE C M, CHOW W L. Numerical study of the turbulent flow past an airfoil with trailing edge separation[J]. AIAA Journal, 1983, 21(11): 1525-1532.
DOI URL |
[27] | WILCOX D C. Turbulence modeling for CFD[M]. 2nd ed. La Canada, Calif.: DCW Industries, 1998. |
[28] |
JIANG C B, YANG Y, DENG B. Study on the nearshore evolution of regular waves under steady wind[J]. Water, 2020, 12(3): 686.
DOI URL |
[29] |
GRILLI S T, SVENDSEN I A, SUBRAMANYA R. Breaking criterion and characteristics for solitary waves on slopes[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1997, 123(3): 102-112.
DOI URL |
[1] | LÜ Zhao, WU Zhiyuan, JIANG Changbo, ZHANG Haojian, GAO Kai, YAN Ren. Numerical investigation of the super typhoon Mangkhut based on the coupled air-sea model [J]. Journal of Marine Sciences, 2023, 41(4): 21-31. |
[2] | ZHANG Chenhao, ZHANG Mingliang, CHAI Chongxu, et al. Numerical study of wave-vegetation interaction based on OpenFOAM software [J]. Journal of Marine Sciences, 2022, 40(1): 42-52. |
[3] | CUI Zijian, LIANG Chujin, LIN Feilong, JIN Weifang, DING Tao, WANG Juan. The observation and analysis of the internal solitary waves by mooring system in the Andaman Sea [J]. Journal of Marine Sciences, 2020, 38(4): 16-25. |
[4] | ZHANG Jiali, ZHANG Anmin, SUN Chaohui, ZHANG Xuefeng, ZHANG Liang. The application research of Robust Vondrak filtering method in extracting internal solitary waves [J]. Journal of Marine Sciences, 2020, 38(1): 1-8. |
[5] | WU Zhi-yuan, JIANG Chang-bo, HE Zhi-yong, CHEN Jie, DENG Bin, XIE Zhen-dong. Coupled atmosphere and wave model and its application in an idealized typhoon [J]. Journal of Marine Sciences, 2019, 37(2): 9-15. |
[6] | SU Yin-qiu, PAN Guo-fu, YU Liang-liang, YANG Wan-kang. Response of bay water exchange to water intake and drainage project [J]. Journal of Marine Sciences, 2018, 36(4): 76-83. |
[7] | ZHANG Fu-kun, ZOU Chuan-ling, LIU Shu-jing, XU Xian, LIU Wei. 3D-numerical simulation on distribution of brine discharge from seawater desalination plant in the sea area near Jinjiang [J]. Journal of Marine Sciences, 2018, 36(2): 12-18. |
[8] | HUANG Zong-wei, DENG Bin, JIANG Chang-bo, LIU Xiao-jian. Numerical simulation of water exchange capability for the encircled harbor:A case study of Zhapo fishing port [J]. Journal of Marine Sciences, 2018, 36(1): 66-74. |
[9] | HUANG Pan-yang, LAI Xiang-hua, JI You-jun, HU Tao-jun, WANG You-zhong. Numerical simulation of sea dikes breaching flood in Donggangxincheng of Zhoushan [J]. Journal of Marine Sciences, 2017, 35(4): 61-68. |
[10] | ZOU Yi-hang, MA Xu-lin, JIANG Sheng, HE Hai-lun, GUO Huan. Effect of COSMIC occultation data assimilation on prediction of typhoon Usagi [J]. Journal of Marine Sciences, 2017, 35(3): 9-19. |
[11] | YU Kai-ben, YANG Tao, GAO Jian, LIN Guang-yi, MENG Qing-jian, ZONG Le. Numerical simulation analysis of scour around Trawl Resistant Seabed Basement based on Flow-3D [J]. Journal of Marine Sciences, 2017, 35(3): 91-98. |
[12] | XU Song-yun, XU Hui-ping, GENG Ming-hui, GUAN Yong-xian. Study on the form of internal solitary wave in Dongsha area of the South China Sea [J]. Journal of Marine Sciences, 2016, 34(4): 1-9. |
[13] | LIN Qi-liang, HUANG Da-ji, XUAN Ji-liang. Spatial variation of the tidal residual currents in the coastal area off Zhejiang and Fujian Provinces in the East China Sea [J]. Journal of Marine Sciences, 2015, 33(4): 30-36. |
[14] | ZHU Ye, ZHAI Guo-qing, LIU Rui, XU Hui-yan, SU Tao. Assimilation experiments of an extratropical cyclone process [J]. Journal of Marine Sciences, 2014, 32(1): 31-39. |
[15] | ZHU Fu, YE Yin-can, HUANG Pan-yang, LIU Du-juan. Simulation analysis on scouring and silting stability of the seafloor with submarine pipeline from Cezi Island to Zhenhai [J]. Journal of Marine Sciences, 2014, 32(1): 74-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||