Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (4): 57-69.DOI: 10.3969/j.issn.1001-909X.2023.04.006
Previous Articles Next Articles
WANG Ying1(), TAO Chunhui1,2,*(), ZHANG Guoyin2, ZHOU Jianping2,3, SHEN Honglei4
Received:
2023-02-14
Revised:
2023-03-25
Online:
2023-12-15
Published:
2024-01-30
CLC Number:
WANG Ying, TAO Chunhui, ZHANG Guoyin, ZHOU Jianping, SHEN Honglei. Simulation study on oblique in situ acoustic longitudinal wave measurement of seafloor inhomogeneous sedimentary layer[J]. Journal of Marine Sciences, 2023, 41(4): 57-69.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2023.04.006
沉积类型 | 声速/(m·s-1) | 密度/ (kg·m-3) | 阻抗/(Pa·s·m-1) |
---|---|---|---|
沉积物Ⅰ | 1 500 | 1 600 | |
沉积物Ⅱ | 1 700 | 1 800 | |
孤石 | 3 200 | 2 600 | 8.32×106 |
Tab.1 Model basic parameter table
沉积类型 | 声速/(m·s-1) | 密度/ (kg·m-3) | 阻抗/(Pa·s·m-1) |
---|---|---|---|
沉积物Ⅰ | 1 500 | 1 600 | |
沉积物Ⅱ | 1 700 | 1 800 | |
孤石 | 3 200 | 2 600 | 8.32×106 |
[1] | 陶春辉. 海底沉积物声学原位测试和特性研究[D]. 杭州: 浙江大学, 2005. |
TAO C H. In situ acoustic experiment and properties study in marine sediments[D]. Hangzhou: Zhejiang University, 2005. | |
[2] | 潘国富. 南海北部海底浅部沉积物声学特性研究[D]. 上海: 同济大学, 2003. |
PAN G F. Research on the acoustic characteristics of seabed sediments in the northern South China Sea[D]. Shanghai: Tongji University, 2003. | |
[3] | 孟祥龙. CT探测技术在跨海顶管孤石群探测的应用研究[J]. 铁道建筑技术, 2021(1):150-154. |
MENG X L. Application research of CT detection technology in boulder group detection of cross-sea pipe jacking[J]. Railway Construction Technology, 2021(1): 150-154. | |
[4] | 刘保华, 阚光明, 李官保. 海底沉积物声学特性测量技术与应用[M]. 北京: 科学出版社, 2019:38-50. |
LIU B H, KAN G M, LI G B. Seafloor sediment acoustic measurement techniques and applications[M]. Beijing: Science Press, 2019: 38-50. | |
[5] |
王景强, 李官保, 阚光明, 等. 深海海底沉积物声学特性原位测量试验研究[J]. 地球物理学报, 2020, 63(12):4463-4472.
DOI |
WANG J Q, LI G B, KAN G M, et al. Experiment study of the in situ acoustic measurement in seafloor sediments from deep sea[J]. Chinese Journal of Geophysics, 2020, 63(12): 4463-4472. | |
[6] | 陶春辉, 金肖兵, 金翔龙, 等. 多频海底声学原位测试系统研制和试用[J]. 海洋学报:中文版, 2006, 28(2):46-50. |
TAO C H, JIN X B, JIN X L, et al. Development of multi-frequency in situ marine sediment geoacoustic measuring system[J]. Acta Oceanologica Sinica, 2006, 28(2): 46-50. | |
[7] | BARBAGELATA A, RICHARDSON M, MIASCHI B, et al. ISSAMS: An in situ sediment acoustic measurement system[C]// Shear waves in marine sediments. Dordrecht: Springer Netherlands, 1991: 305-312. |
[8] | KRAFT B J, MAYER L A, SIMPKIN P, et al. Calculation of in situ acoustic wave properties in marine sediments[C]// Impact of littoral environmental variability of acoustic predictions and sonar performance. Dordrecht: Springer Netherlands, 2002: 123-130. |
[9] |
LEE K M, BALLARD M S, MCNEESE A R, et al. In situ measurements of sediment acoustic properties in Currituck Sound and comparison to models[J]. The Journal of the Acoustical Society of America, 2016, 140(5): 3593-3606.
DOI URL |
[10] |
HEFNER B T, JACKSON D R, WILLIAMS K L, et al. Mid- to high-frequency acoustic penetration and propagation measurements in a sandy sediment[J]. IEEE Journal of Oceanic Engineering, 2009, 34(4): 372-387.
DOI URL |
[11] |
ROBB G B N, BEST A I, DIX J K, et al. Measurement of the in situ compressional wave properties of marine sediments[J]. IEEE Journal of Oceanic Engineering, 2007, 32(2): 484-496.
DOI URL |
[12] |
BEST A I, ROBERTS J A, SOMERS M L. A new instrument for making in-situ acoustic and geotechnical measurements in seafloor sediments[J]. Underwater Technology, 1998, 23(3): 123-131.
DOI URL |
[13] | 阚光明, 刘保华, 韩国忠, 等. 原位测量技术在黄海沉积声学调查中的应用[J]. 海洋学报, 2010, 32(3):88-94. |
KAN G M, LIU B H, HAN G Z, et al. Application of in-situ measurement technology to the survey of seafloor sediment acoustic properties in the Huanghai Sea[J]. Acta Oceanologica Sinica, 2010, 32(3): 88-94.
DOI URL |
|
[14] | WANG J Q, LI G B, LIU B H, et al. Experimental study of the ballast in situ sediment acoustic measurement system in South China Sea[J]. Marine Georesources & Geotechnology, 2018, 36(5): 515-521. |
[15] |
FU S S, WILKENS R H, FRAZER L N. Acoustic lance: New in situ seafloor velocity profiles[J]. The Journal of the Acoustical Society of America, 1996, 99(1): 234-242.
DOI URL |
[16] | TAO C H, DENG X M, LI H X, et al. Development of in situ marine sediment geo-acoustic measurement system with real-time and multi frequencies (the second generation)[J]. China Ocean Engineering, 2009, 23(4): 769-778. |
[17] |
YANG J, TANG D J, WILLIAMS K L. Direct measurement of sediment sound speed in Shallow Water’06[J]. The Journal of the Acoustical Society of America, 2008, 124(3): EL116-EL121.
DOI URL |
[18] | 刘伯胜, 黄益旺, 陈文剑, 等. 水声学原理[M].第三版. 北京: 科学出版社, 2020:65-83. |
LIU B S, HUANG Y W, CHEN W J, et al. Principles of underwater acoustics[M]. 3rd ed. Beijing: Science Press, 2020: 65-83. | |
[19] | 周志远, 高金耀, 吴招才, 等. 东海莫霍面起伏与地壳减薄特征初步分析[J]. 海洋学研究, 2013, 31(1):16-25. |
ZHOU Z Y, GAO J Y, WU Z C, et al. Preliminary analyses of the characteristics of Moho undulation and crustal thinning in East China Sea[J]. Journal of Marine Sciences, 2013, 31(1): 16-25. | |
[20] | 李红星. 杭州湾沉积物原位声学特性分析及浅表低速层研究[D]. 长春: 吉林大学, 2008. |
LI H X. In-situ acoustic properties analyse of the sediment in Hangzhou Bay and surface low-velocity layer study[D]. Changchun: Jilin University, 2008. | |
[21] | 周建平, 吕文正, 陶春辉. 海底柱状沉积物超声测量[J]. 东海海洋, 2003, 21(4):26-33. |
ZHOU J P, LÜ W Z, TAO C H. Ultrasonic measurement of seafloor sediment cores[J]. Donghai Marine Science, 2003, 21(4): 26-33. | |
[22] | 张慧. 花岗岩声波波速与岩体弹性模量的统计分析[J]. 低碳世界, 2016(2):110. |
ZHANG H. Statistical analysis of acoustic wave velocity and elastic modulus of granite[J]. Low Carbon World, 2016(2): 110. | |
[23] |
YANG J, JACKSON D R. Measurement of sound speed in fine-grained sediments during the seabed characterization experiment[J]. IEEE Journal of Oceanic Engineering, 2020, 45(1): 39-50.
DOI URL |
[24] | ASTM STANDARDS. Standard test methods for downhole seismic testing: ASTM D7400-08[S]. PA: ASTM Interna-tional, 2008. |
[25] | 李倩宇, 陶春辉, 周建平, 等. 海底沉积物声学原位信号自动拾取方法研究[J]. 杭州电子科技大学学报:自然科学版, 2019, 39(2):18-21,39. |
LI Q Y, TAO C H, ZHOU J P, et al. Study of the in-situ acoustic signal automatic picking in seafloor sediment[J]. Journal of Hangzhou Dianzi University: Natural Sciences, 2019, 39(2): 18-21, 39. |
[1] | LÜ Zhao, WU Zhiyuan, JIANG Changbo, ZHANG Haojian, GAO Kai, YAN Ren. Numerical investigation of the super typhoon Mangkhut based on the coupled air-sea model [J]. Journal of Marine Sciences, 2023, 41(4): 21-31. |
[2] | ZHANG Liangbin, QU Ke, HUANG Jingxuan, WANG Xu, GUO Lei. Numerical simulation study on influences of onshore wind on overtopping characteristics of solitary wave under coastal seawall [J]. Journal of Marine Sciences, 2023, 41(4): 32-45. |
[3] | ZHANG Chenhao, ZHANG Mingliang, CHAI Chongxu, et al. Numerical study of wave-vegetation interaction based on OpenFOAM software [J]. Journal of Marine Sciences, 2022, 40(1): 42-52. |
[4] | ZHOU Wei, XUAN Jiliang, HUANG Daji. Headland tidal residual eddies in the area adjacent to the Sanggou Bay and their generation mechanism [J]. Journal of Marine Sciences, 2020, 38(3): 10-20. |
[5] | LIU Yong, LU Wen-fang, YING Chao, LI Xin-wen, YAO Wen-wei. Resonance in the Yueqing Bay generated by March 11 Japan Tsunami [J]. Journal of Marine Sciences, 2019, 37(3): 31-39. |
[6] | WU Zhi-yuan, JIANG Chang-bo, HE Zhi-yong, CHEN Jie, DENG Bin, XIE Zhen-dong. Coupled atmosphere and wave model and its application in an idealized typhoon [J]. Journal of Marine Sciences, 2019, 37(2): 9-15. |
[7] | SU Yin-qiu, PAN Guo-fu, YU Liang-liang, YANG Wan-kang. Response of bay water exchange to water intake and drainage project [J]. Journal of Marine Sciences, 2018, 36(4): 76-83. |
[8] | ZHANG Fu-kun, ZOU Chuan-ling, LIU Shu-jing, XU Xian, LIU Wei. 3D-numerical simulation on distribution of brine discharge from seawater desalination plant in the sea area near Jinjiang [J]. Journal of Marine Sciences, 2018, 36(2): 12-18. |
[9] | HUANG Zong-wei, DENG Bin, JIANG Chang-bo, LIU Xiao-jian. Numerical simulation of water exchange capability for the encircled harbor:A case study of Zhapo fishing port [J]. Journal of Marine Sciences, 2018, 36(1): 66-74. |
[10] | HUANG Pan-yang, LAI Xiang-hua, JI You-jun, HU Tao-jun, WANG You-zhong. Numerical simulation of sea dikes breaching flood in Donggangxincheng of Zhoushan [J]. Journal of Marine Sciences, 2017, 35(4): 61-68. |
[11] | ZOU Yi-hang, MA Xu-lin, JIANG Sheng, HE Hai-lun, GUO Huan. Effect of COSMIC occultation data assimilation on prediction of typhoon Usagi [J]. Journal of Marine Sciences, 2017, 35(3): 9-19. |
[12] | YU Kai-ben, YANG Tao, GAO Jian, LIN Guang-yi, MENG Qing-jian, ZONG Le. Numerical simulation analysis of scour around Trawl Resistant Seabed Basement based on Flow-3D [J]. Journal of Marine Sciences, 2017, 35(3): 91-98. |
[13] | JIANG Shao-jie, LIU Hai-di, WU Wei, WANG Shi-ming. Study on hydrodynamics and effect evaluation for constructing of an artificial reef [J]. Journal of Marine Sciences, 2017, 35(2): 53-60. |
[14] | CHENG Wen-long, PAN Cun-hong, WU Xiu-guang. Processing on key parameter in FVCOM and its application on tidal bore simulation [J]. Journal of Marine Sciences, 2017, 35(1): 33-40. |
[15] | FENG Guan-hua, LI Zhi-gang, FENG Ying-bin, LIANG Hong-guang, CHENG Yang-rui, WU Dong-hua. The contour design and analysis for drag characteristic of floating body for polymetallic nodule concept vehicle [J]. Journal of Marine Sciences, 2017, 35(1): 80-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||