
Research of carbon storage assessment of island vegetation based on UAV multispectral remote sensing:A case study of Dazhuzhi Island in Dongtou
XIE Jiaqi, ZHANG Zhao, ZHOU Wen, WANG Jinwang, CHEN Yahui
Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (4) : 84-93.
Research of carbon storage assessment of island vegetation based on UAV multispectral remote sensing:A case study of Dazhuzhi Island in Dongtou
Taking Dazhuzhi Island (Dongtou, Wenzhou) as the research area, UAV equipped with multispectral sensors was used to acquire high-resolution remote sensing images, the optimal spectral band combination was selected to classify the island vegetation, and the vegetation types was divided into arbors, shrubs and herbs by supervised classification. The accuracy of vegetation classification was 99.72%, and the Kappa coefficient was 0.995 4. The spatial distribution of dominant species of arbors and shrubs was obtained by using the deep convolutional neural network (the precision rate was 0.79), and combined with the biomass equations, the spatial distribution of the biomass of dominant species of arbors and shrubs was inversed (arbors’ R2=0.97, shrubs’ R2=0.99). The biomass inversion equations of 3 shrub dominant species (Ficus erecta, Mallotus japonicas, and Eurya emarginata) were constructed by field sampling, and the other dominant species biomass inversion equations were obtained from literature. Based on the biomass and spatial distribution of dominant species, the carbon storage of arbors and shrubbys was 300.36 t and 47.59 t, respectively. Using normalized difference vegetation index (NDVI) to invert the spatial distribution of herb biomass (R2=0.99), combined with the biomass equation of the dominant herb species (Zoysia sinica) constructed from the measured data, the carbon storage of herbs was 21.59 t on Dazhuzhi Island.
island / vegetation carbon storage / unmanned aerial vehicle (UAV) / multispectral remotely sensed image
[1] |
2017年海岛统计调查公报[R]. 北京: 自然资源部, 2018.
2017 bulletin of island statistical survey[R]. Beijing: Ministry of Natural Resources, 2018.
|
[2] |
王晓丽, 王嫒, 石洪华, 等. 海岛陆地生态系统固碳估算方法[J]. 生态学报, 2014, 34(1):88-96.
|
[3] |
池毓锋, 赖日文, 余莉莉, 等. 平潭岛木麻黄碳储量遥感估测[J]. 森林与环境学报, 2016, 36(4):461-466.
|
[4] |
魏艳艳. 2009-2018年崇明岛主要土地利用类型植被碳储量变化及其驱动力分析[D]. 上海: 上海师范大学, 2020.
|
[5] |
|
[6] |
江萍. 基于无人机高光谱影像的防护林树种分类研究[D]. 石河子: 石河子大学, 2022.
|
[7] |
赵晓宇. 无人机影像空间分辨率和波谱信息对湿地地物分类的影响研究[D]. 桂林: 桂林理工大学, 2022.
|
[8] |
唐佳佳, 董婧, 杨永均, 等. 联合LiDAR和高光谱数据反演矿山生态修复区植被地上碳储量[J]. 金属矿山, 2023(1):65-72.
|
[9] |
吴新宇, 廖廓, 李勇波, 等. 基于无人机LiDAR数据的马尾松碳储量估测[J]. 海峡科学, 2023(2):43-49.
|
[10] |
黄昕晰. 基于无人机影像与Mask R-CNN的城市单木检测与参数提取研究[D]. 杭州: 浙江农林大学, 2020.
|
[11] |
|
[12] |
关于发布全国生物物种资源调查相关技术规定试行的公告[Z/OL]. 北京: 环境保护部, 2010. https://www.mee.gov.cn/gkml/hbb/bgg/201004/t20100428_188866.htm.
Announcement on the issuance of relevant technical provisions for the national survey of biological species resources for trial implementation[Z/OL]. Beijing: Ministry of Environmental Protection, 2010. https://www.mee.gov.cn/gkml/hbb/bgg/201004/t20100428_188866.htm.
|
[13] |
汪珍川, 杜虎, 宋同清, 等. 广西主要树种(组)异速生长模型及森林生物量特征[J]. 生态学报, 2015, 35(13):4462-4472.
|
[14] |
周国逸, 尹光彩, 唐旭利, 等. 中国森林生态系统碳储量-生物量方程[M]. 北京: 科学出版社, 2018.
|
[15] |
戎建涛, 郜爱玲, 刘晓双, 等. 浙南主要乔木树种碳含量研究[J]. 西北林学院学报, 2018, 33(5):258-262.
|
[16] |
徐新良, 曹明奎, 李克让. 中国森林生态系统植被碳储量时空动态变化研究[J]. 地理科学进展, 2007, 26(6):1-10.
|
[17] |
雷海清, 孙高球, 郑得利. 温州市森林生态系统碳储量研究[J]. 南京林业大学学报:自然科学版, 2022, 46(5):20-26.
|
[18] |
胡会峰, 王志恒, 刘国华, 等. 中国主要灌丛植被碳储量[J]. 植物生态学报, 2006, 30(4):539-544.
在广泛收集资料的基础上,利用植被平均碳密度方法,估算了我国6种主要灌丛植被的碳储量,并分析了其区域分布特征。主要结果如下:1) 6种灌丛植被总面积为15 462.64 ×104 hm2,总碳储量为1.68±0.12 Pg C(1 Pg=1015g),灌丛植被平均碳密度为10.88±0.77 Mg C•hm-2(1 Mg=106 g),不同植被类型差异较大,在5.92~17Mg C•hm-2之间波动。2) 从区域分布来看,西南3省(云南、贵州、四川)既是我国灌丛主要的分布地区之一,分布面积占6种灌丛总面积的23.5%,又是我国灌丛碳储量的主要储库,碳储量占整个6种灌丛碳储量的1/3(32.6%),适宜的水热条件决定了该地区的植被平均碳密度要高于全国平均水平。3) 与我国森林和草地的植被碳储量相比,这些灌丛碳储量相当于我国森林和草 地碳储量的27%~40%和36%~55%。
|
/
〈 |
|
〉 |