Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (4): 84-93.DOI: 10.3969/j.issn.1001-909X.2023.04.008
Previous Articles Next Articles
XIE Jiaqi1(), ZHANG Zhao1,*(), ZHOU Wen1, WANG Jinwang2, CHEN Yahui1
Received:
2022-11-28
Revised:
2023-09-13
Online:
2023-12-15
Published:
2024-01-30
CLC Number:
XIE Jiaqi, ZHANG Zhao, ZHOU Wen, WANG Jinwang, CHEN Yahui. Research of carbon storage assessment of island vegetation based on UAV multispectral remote sensing:A case study of Dazhuzhi Island in Dongtou[J]. Journal of Marine Sciences, 2023, 41(4): 84-93.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2023.04.008
物种 | 样本量 | 胸径或基径/cm | 冠幅/m2 | |||
---|---|---|---|---|---|---|
范围 | 标准差 | 范围 | 标准差 | |||
台湾相思 | 15 | 4.80~18.90 | 4.06 | 3.00~48.00 | 14.89 | |
椿叶花椒 | 15 | 6.30~23.00 | 5.75 | 4.00~70.68 | 22.73 | |
黑松 | 15 | 6.80~11.70 | 5.15 | 4.94~16.38 | 4.18 | |
天仙果 | 15 | 6.80~10.70 | 0.93 | 8.78~19.32 | 2.74 | |
野梧桐 | 15 | 1.30~8.77 | 1.85 | 47.75~11.40 | 1.94 | |
滨柃 | 15 | 6.90~9.10 | 0.65 | 4.32~7.83 | 1.23 |
Tab.1 The parameters for crown and diameter at breast height(branch) diameter of dominant plant species
物种 | 样本量 | 胸径或基径/cm | 冠幅/m2 | |||
---|---|---|---|---|---|---|
范围 | 标准差 | 范围 | 标准差 | |||
台湾相思 | 15 | 4.80~18.90 | 4.06 | 3.00~48.00 | 14.89 | |
椿叶花椒 | 15 | 6.30~23.00 | 5.75 | 4.00~70.68 | 22.73 | |
黑松 | 15 | 6.80~11.70 | 5.15 | 4.94~16.38 | 4.18 | |
天仙果 | 15 | 6.80~10.70 | 0.93 | 8.78~19.32 | 2.74 | |
野梧桐 | 15 | 1.30~8.77 | 1.85 | 47.75~11.40 | 1.94 | |
滨柃 | 15 | 6.90~9.10 | 0.65 | 4.32~7.83 | 1.23 |
类型 | 物种 | 样本量 | 基径/cm | 生物量/kg | |||
---|---|---|---|---|---|---|---|
范围 | 标准差 | 范围 | 标准差 | ||||
灌丛 | 野梧桐 | 7 | 2.20~6.80 | 1.38 | 0.08~1.33 | 0.44 | |
天仙果 | 8 | 2.23~5.06 | 0.89 | 0.28~1.51 | 0.65 | ||
滨柃 | 12 | 1.08~5.38 | 1.51 | 0.05~2.36 | 0.81 |
Tab.2 The branch diameter and biomass of dominant shrubs
类型 | 物种 | 样本量 | 基径/cm | 生物量/kg | |||
---|---|---|---|---|---|---|---|
范围 | 标准差 | 范围 | 标准差 | ||||
灌丛 | 野梧桐 | 7 | 2.20~6.80 | 1.38 | 0.08~1.33 | 0.44 | |
天仙果 | 8 | 2.23~5.06 | 0.89 | 0.28~1.51 | 0.65 | ||
滨柃 | 12 | 1.08~5.38 | 1.51 | 0.05~2.36 | 0.81 |
样地编号 | 生物量/kg | NDVI | 样地编号 | 生物量/kg | NDVI | 样地编号 | 生物量/kg | NDVI |
---|---|---|---|---|---|---|---|---|
H13 | 1.04 | 0.88 | H23 | 0.32 | 0.34 | H33 | 0.79 | 0.73 |
H14 | 0.15 | 0.23 | H24 | 0.83 | 0.71 | H34 | 0.69 | 0.66 |
H15 | 0.22 | 0.28 | H25 | 0.94 | 0.79 | H35 | 0.24 | 0.34 |
H16 | 0.20 | 0.26 | H26 | 0.53 | 0.49 | H36 | 0.37 | 0.34 |
H17 | 0.17 | 0.24 | H27 | 0.31 | 0.37 | H37 | 0.13 | 0.26 |
H18 | 0.43 | 0.44 | H28 | 0.37 | 0.37 | H38 | 0.21 | 0.22 |
H19 | 0.76 | 0.67 | H29 | 0.15 | 0.25 | H39 | 0.30 | 0.40 |
H20 | 0.25 | 0.29 | H30 | 0.57 | 0.51 | H40 | 0.71 | 0.70 |
H21 | 0.40 | 0.42 | H31 | 0.59 | 0.52 | H41 | 0.17 | 0.31 |
H22 | 0.08 | 0.16 | H32 | 0.30 | 0.31 | H42 | 0.68 | 0.53 |
Tab.3 The biomass and normalized difference vegetation index(NDVI) of herb plots
样地编号 | 生物量/kg | NDVI | 样地编号 | 生物量/kg | NDVI | 样地编号 | 生物量/kg | NDVI |
---|---|---|---|---|---|---|---|---|
H13 | 1.04 | 0.88 | H23 | 0.32 | 0.34 | H33 | 0.79 | 0.73 |
H14 | 0.15 | 0.23 | H24 | 0.83 | 0.71 | H34 | 0.69 | 0.66 |
H15 | 0.22 | 0.28 | H25 | 0.94 | 0.79 | H35 | 0.24 | 0.34 |
H16 | 0.20 | 0.26 | H26 | 0.53 | 0.49 | H36 | 0.37 | 0.34 |
H17 | 0.17 | 0.24 | H27 | 0.31 | 0.37 | H37 | 0.13 | 0.26 |
H18 | 0.43 | 0.44 | H28 | 0.37 | 0.37 | H38 | 0.21 | 0.22 |
H19 | 0.76 | 0.67 | H29 | 0.15 | 0.25 | H39 | 0.30 | 0.40 |
H20 | 0.25 | 0.29 | H30 | 0.57 | 0.51 | H40 | 0.71 | 0.70 |
H21 | 0.40 | 0.42 | H31 | 0.59 | 0.52 | H41 | 0.17 | 0.31 |
H22 | 0.08 | 0.16 | H32 | 0.30 | 0.31 | H42 | 0.68 | 0.53 |
回归方程 | a | b | R2 | F值 | SEE | p值 | ||
---|---|---|---|---|---|---|---|---|
生物量 反演 | 天仙果 | Y=a+bX | -1.374 1 | 0.672 3 | 0.847 0 | 33.204 0 | 0.276 0 | 0.001 0 |
Y=aXb | 0.034 2 | 2.565 7 | 0.864 5 | 38.287 0 | 0.284 0 | 0.001 0 | ||
野梧桐 | Y=a+bX | -0.795 5 | 0.467 3 | 0.756 0 | 15.521 0 | 0.438 0 | 0.011 0 | |
Y=aXb | 0.030 3 | 2.391 5 | 0.938 0 | 91.717 0 | 0.340 0 | 0.000 2 | ||
滨柃 | Y=a+bX | -0.462 8 | 0.275 3 | 0.729 0 | 30.594 0 | 0.228 0 | 0.000 3 | |
Y=aXb | 0.027 0 | 2.154 4 | 0.738 0 | 31.913 0 | 0.430 0 | 0.000 2 | ||
中华结缕草 | Y=a+bX | -158.480 0 | 1 352.445 0 | 0.967 0 | 809.549 0 | 49.863 0 | 0.000 0 | |
Y=aXb | 1 384.025 0 | 1.483 0 | 0.934 0 | 394.064 0 | 0.177 0 | 0.000 0 | ||
胸径(基径)与冠幅 | Y=a+bX | 5.837 2 | 0.252 0 | 0.845 0 | 484.655 0 | 1.490 0 | 0.000 0 | |
Y=aXb | 3.578 0 | 0.382 0 | 0.526 0 | 97.508 0 | 0.258 0 | 0.000 0 |
Tab.4 Variance analysis of regression equations
回归方程 | a | b | R2 | F值 | SEE | p值 | ||
---|---|---|---|---|---|---|---|---|
生物量 反演 | 天仙果 | Y=a+bX | -1.374 1 | 0.672 3 | 0.847 0 | 33.204 0 | 0.276 0 | 0.001 0 |
Y=aXb | 0.034 2 | 2.565 7 | 0.864 5 | 38.287 0 | 0.284 0 | 0.001 0 | ||
野梧桐 | Y=a+bX | -0.795 5 | 0.467 3 | 0.756 0 | 15.521 0 | 0.438 0 | 0.011 0 | |
Y=aXb | 0.030 3 | 2.391 5 | 0.938 0 | 91.717 0 | 0.340 0 | 0.000 2 | ||
滨柃 | Y=a+bX | -0.462 8 | 0.275 3 | 0.729 0 | 30.594 0 | 0.228 0 | 0.000 3 | |
Y=aXb | 0.027 0 | 2.154 4 | 0.738 0 | 31.913 0 | 0.430 0 | 0.000 2 | ||
中华结缕草 | Y=a+bX | -158.480 0 | 1 352.445 0 | 0.967 0 | 809.549 0 | 49.863 0 | 0.000 0 | |
Y=aXb | 1 384.025 0 | 1.483 0 | 0.934 0 | 394.064 0 | 0.177 0 | 0.000 0 | ||
胸径(基径)与冠幅 | Y=a+bX | 5.837 2 | 0.252 0 | 0.845 0 | 484.655 0 | 1.490 0 | 0.000 0 | |
Y=aXb | 3.578 0 | 0.382 0 | 0.526 0 | 97.508 0 | 0.258 0 | 0.000 0 |
植被类型 | 物种名称 | 生物量方程 | 方程来源 |
---|---|---|---|
乔木 | 台湾相思/ 椿叶花椒 | W干=0.089 5×D2.452 1; W枝=0.020 5×D2.505 9; W叶=0.021 5×D2.039 3; W根=0.006 7×D2.877 4; W=W干+W枝+W叶+W根 | 文献[ |
灌丛 | 黑松 | W干=0.067×D2.409; W枝=0.022×D2.27; W叶=0.025×D2.124; W根=0.038×D2.165; W=W干+W枝+W叶+W根 | 文献[ |
灌丛 | 天仙果 | W=0.034 2×D2.565 7 | 实测构建 |
滨柃 | W=0.027 0×D2.154 4 | 实测构建 | |
野梧桐 | W=0.030 3×D2.391 5 | 实测构建 | |
草丛 | 中华结缕草 | W=1 352.445 0×NDVI-158.480 0 | 实测构建 |
Tab.5 Biomass equations for dominant species on Dazhuzhi Island
植被类型 | 物种名称 | 生物量方程 | 方程来源 |
---|---|---|---|
乔木 | 台湾相思/ 椿叶花椒 | W干=0.089 5×D2.452 1; W枝=0.020 5×D2.505 9; W叶=0.021 5×D2.039 3; W根=0.006 7×D2.877 4; W=W干+W枝+W叶+W根 | 文献[ |
灌丛 | 黑松 | W干=0.067×D2.409; W枝=0.022×D2.27; W叶=0.025×D2.124; W根=0.038×D2.165; W=W干+W枝+W叶+W根 | 文献[ |
灌丛 | 天仙果 | W=0.034 2×D2.565 7 | 实测构建 |
滨柃 | W=0.027 0×D2.154 4 | 实测构建 | |
野梧桐 | W=0.030 3×D2.391 5 | 实测构建 | |
草丛 | 中华结缕草 | W=1 352.445 0×NDVI-158.480 0 | 实测构建 |
物种 名称 | 株数 | 面积/hm2 | 总生物量/t | 总碳储量/t | 平均碳密度/ (t·hm-2) |
---|---|---|---|---|---|
乔木 | 28 856 | 11.69 | 667.47 | 300.36 | 25.69 |
灌丛 | 22 597 | 7.98 | 105.75 | 47.59 | 5.96 |
草丛 | 9.07 | 47.98 | 21.59 | 2.38 |
Tab.6 Carbon storage estimation results of arbors, shrubs and herbs on Dazhuzhi Island
物种 名称 | 株数 | 面积/hm2 | 总生物量/t | 总碳储量/t | 平均碳密度/ (t·hm-2) |
---|---|---|---|---|---|
乔木 | 28 856 | 11.69 | 667.47 | 300.36 | 25.69 |
灌丛 | 22 597 | 7.98 | 105.75 | 47.59 | 5.96 |
草丛 | 9.07 | 47.98 | 21.59 | 2.38 |
Fig.8 Correlation between UAV multispectral remote sensing and quadrat measurement in sample plots (Fig.8a shows the correlation of the plant numbers between UAV multispectral remote sensing and quadrat measurement in shrub and arbor sample plots; Fig.8b to Fig.8d show the correlation of biomass between UAV multispectral remote sensing and quadrat measurement in 3 arbor sample plots, 6 shrub sample plots and 12 herb sample plots, respectively.)
植被 类型 | 样方 编号 | 株数 | 生物量 | |||||
---|---|---|---|---|---|---|---|---|
实测 /株 | 单木分 割/株 | 样方调 查/kg | 遥感估 算/kg | 差值/kg | 相对偏 差/% | |||
乔木 | T1 | 86 | 80 | 6 397.01 | 5 231.35 | -1 165.66 | 18.22 | |
T2 | 91 | 95 | 2 171.10 | 2 420.34 | 249.24 | 11.48 | ||
T3 | 46 | 39 | 1 006.23 | 879.42 | -126.81 | 12.60 | ||
灌丛 | S1 | 09 | 11 | 35.28 | 27.96 | -7.32 | 20.75 | |
S2 | 7 | 9 | 219.99 | 192.22 | -27.77 | 12.62 | ||
S3 | 7 | 5 | 34.95 | 23.48 | -11.47 | 32.82 | ||
S4 | 15 | 5 | 36.52 | 25.09 | -11.43 | 31.30 | ||
S5 | 6 | 5 | 14.28 | 10.03 | -4.25 | 29.76 | ||
S6 | 6 | 5 | 86.41 | 63.18 | -23.23 | 26.88 |
Tab.7 Comparison of arbor and shrub plant number and biomass by remote sensing inversion and quadrat measurement
植被 类型 | 样方 编号 | 株数 | 生物量 | |||||
---|---|---|---|---|---|---|---|---|
实测 /株 | 单木分 割/株 | 样方调 查/kg | 遥感估 算/kg | 差值/kg | 相对偏 差/% | |||
乔木 | T1 | 86 | 80 | 6 397.01 | 5 231.35 | -1 165.66 | 18.22 | |
T2 | 91 | 95 | 2 171.10 | 2 420.34 | 249.24 | 11.48 | ||
T3 | 46 | 39 | 1 006.23 | 879.42 | -126.81 | 12.60 | ||
灌丛 | S1 | 09 | 11 | 35.28 | 27.96 | -7.32 | 20.75 | |
S2 | 7 | 9 | 219.99 | 192.22 | -27.77 | 12.62 | ||
S3 | 7 | 5 | 34.95 | 23.48 | -11.47 | 32.82 | ||
S4 | 15 | 5 | 36.52 | 25.09 | -11.43 | 31.30 | ||
S5 | 6 | 5 | 14.28 | 10.03 | -4.25 | 29.76 | ||
S6 | 6 | 5 | 86.41 | 63.18 | -23.23 | 26.88 |
样地 编号 | NDVI | 生物量 | |||
---|---|---|---|---|---|
样方调查/kg | 遥感估算/kg | 差值/kg | 相对偏差/% | ||
H1 | 0.27 | 0.21 | 0.21 | 0.00 | 0.00 |
H2 | 0.25 | 0.18 | 0.17 | -0.01 | 5.56 |
H3 | 0.25 | 0.18 | 0.18 | 0.00 | 0.00 |
H4 | 0.22 | 0.12 | 0.14 | 0.02 | 16.67 |
H5 | 0.40 | 0.37 | 0.39 | 0.02 | 5.41 |
H6 | 0.31 | 0.24 | 0.26 | 0.02 | 8.33 |
H7 | 0.45 | 0.44 | 0.45 | 0.01 | 2.27 |
H8 | 0.38 | 0.33 | 0.35 | 0.02 | 6.06 |
H9 | 0.69 | 0.74 | 0.77 | 0.03 | 4.05 |
H10 | 0.24 | 0.22 | 0.17 | -0.05 | 22.73 |
H11 | 0.65 | 0.79 | 0.72 | -0.07 | 8.86 |
H12 | 0.68 | 0.84 | 0.76 | -0.08 | 9.52 |
Tab.8 Comparison between remote sensing inversion and quadrat measurement of herb biomass
样地 编号 | NDVI | 生物量 | |||
---|---|---|---|---|---|
样方调查/kg | 遥感估算/kg | 差值/kg | 相对偏差/% | ||
H1 | 0.27 | 0.21 | 0.21 | 0.00 | 0.00 |
H2 | 0.25 | 0.18 | 0.17 | -0.01 | 5.56 |
H3 | 0.25 | 0.18 | 0.18 | 0.00 | 0.00 |
H4 | 0.22 | 0.12 | 0.14 | 0.02 | 16.67 |
H5 | 0.40 | 0.37 | 0.39 | 0.02 | 5.41 |
H6 | 0.31 | 0.24 | 0.26 | 0.02 | 8.33 |
H7 | 0.45 | 0.44 | 0.45 | 0.01 | 2.27 |
H8 | 0.38 | 0.33 | 0.35 | 0.02 | 6.06 |
H9 | 0.69 | 0.74 | 0.77 | 0.03 | 4.05 |
H10 | 0.24 | 0.22 | 0.17 | -0.05 | 22.73 |
H11 | 0.65 | 0.79 | 0.72 | -0.07 | 8.86 |
H12 | 0.68 | 0.84 | 0.76 | -0.08 | 9.52 |
[1] | 2017年海岛统计调查公报[R]. 北京: 自然资源部, 2018. |
2017 bulletin of island statistical survey[R]. Beijing: Ministry of Natural Resources, 2018. | |
[2] | 王晓丽, 王嫒, 石洪华, 等. 海岛陆地生态系统固碳估算方法[J]. 生态学报, 2014, 34(1):88-96. |
WANG X L, WANG A, SHI H H, et al. Discussion of carbon sequestration estimates in the island terrestrial ecosystems[J]. Acta Ecologica Sinica, 2014, 34(1): 88-96. | |
[3] | 池毓锋, 赖日文, 余莉莉, 等. 平潭岛木麻黄碳储量遥感估测[J]. 森林与环境学报, 2016, 36(4):461-466. |
CHI Y F, LAI R W, YU L L, et al. Remote sensing estimation of Casuarina equisetifolia carbon storage in Pingtan Island[J]. Journal of Forest and Environment, 2016, 36(4): 461-466. | |
[4] | 魏艳艳. 2009-2018年崇明岛主要土地利用类型植被碳储量变化及其驱动力分析[D]. 上海: 上海师范大学, 2020. |
WEI Y Y. Analysis on the change and driving force of carbon storage of main land use types in Chongming Island from 2009 to 2018[D]. Shanghai: Shanghai Normal University, 2020. | |
[5] |
PASCUAL A, GIARDINA C P, SELMANTS P C, et al. A new remote sensing-based carbon sequestration potential index (CSPI): A tool to support land carbon management[J]. Forest Ecology and Management, 2021, 494: 119343.
DOI URL |
[6] | 江萍. 基于无人机高光谱影像的防护林树种分类研究[D]. 石河子: 石河子大学, 2022. |
JIANG P. Research on tree species classification of shelterbelt based on UAV hyperspectral image[D]. Shihezi: Shihezi University, 2022. | |
[7] | 赵晓宇. 无人机影像空间分辨率和波谱信息对湿地地物分类的影响研究[D]. 桂林: 桂林理工大学, 2022. |
ZHAO X Y. Effects of UAV image resolution and spectral information on wetland feature classification[D]. Guilin: Guilin University of Technology, 2022. | |
[8] | 唐佳佳, 董婧, 杨永均, 等. 联合LiDAR和高光谱数据反演矿山生态修复区植被地上碳储量[J]. 金属矿山, 2023(1):65-72. |
TANG J J, DONG J, YANG Y J, et al. Inversion of aboveground carbon stock of vegetation in mine ecological restoration area by combining LiDAR and hyperspectral data[J]. Metal Mine, 2023(1): 65-72. | |
[9] | 吴新宇, 廖廓, 李勇波, 等. 基于无人机LiDAR数据的马尾松碳储量估测[J]. 海峡科学, 2023(2):43-49. |
WU X Y, LIAO K, LI Y B, et al. Carbon storage estimation of Pinus massoniana based on UAV LiDAR data[J]. Straits Science, 2023(2): 43-49. | |
[10] | 黄昕晰. 基于无人机影像与Mask R-CNN的城市单木检测与参数提取研究[D]. 杭州: 浙江农林大学, 2020. |
HUANG X X. Research on urban single tree detection and parameters extraction based on UAV image and mask R-CNN[D]. Hangzhou: Zhejiang A & F University, 2020. | |
[11] |
HAO Z B, LIN L L, POST C J, et al. Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN)[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178: 112-123.
DOI URL |
[12] | 关于发布全国生物物种资源调查相关技术规定试行的公告[Z/OL]. 北京: 环境保护部, 2010. https://www.mee.gov.cn/gkml/hbb/bgg/201004/t20100428_188866.htm. |
Announcement on the issuance of relevant technical provisions for the national survey of biological species resources for trial implementation[Z/OL]. Beijing: Ministry of Environmental Protection, 2010. https://www.mee.gov.cn/gkml/hbb/bgg/201004/t20100428_188866.htm. | |
[13] | 汪珍川, 杜虎, 宋同清, 等. 广西主要树种(组)异速生长模型及森林生物量特征[J]. 生态学报, 2015, 35(13):4462-4472. |
WANG Z C, DU H, SONG T Q, et al. Allometric models of major tree species and forest biomass in Guangxi[J]. Acta Ecologica Sinica, 2015, 35(13): 4462-4472. | |
[14] | 周国逸, 尹光彩, 唐旭利, 等. 中国森林生态系统碳储量-生物量方程[M]. 北京: 科学出版社, 2018. |
ZHOU G Y, YIN G C, TANG X L, et al. Carbon storage-biomass equation of forest ecosystem in China[M]. Beijing: Science Press, 2018. | |
[15] | 戎建涛, 郜爱玲, 刘晓双, 等. 浙南主要乔木树种碳含量研究[J]. 西北林学院学报, 2018, 33(5):258-262. |
RONG J T, GAO A L, LIU X S, et al. Carbon concen-tration of the main tree species in southern Zhejiang[J]. Journal of Northwest Forestry University, 2018, 33(5): 258-262. | |
[16] | 徐新良, 曹明奎, 李克让. 中国森林生态系统植被碳储量时空动态变化研究[J]. 地理科学进展, 2007, 26(6):1-10. |
XU X L, CAO M K, LI K R. Temporal-spatial dynamics of carbon storage of forest vegetation in China[J]. Progress in Geography, 2007, 26(6): 1-10. | |
[17] | 雷海清, 孙高球, 郑得利. 温州市森林生态系统碳储量研究[J]. 南京林业大学学报:自然科学版, 2022, 46(5):20-26. |
LEI H Q, SUN G Q, ZHENG D L. Carbon storage of forest ecosystem in Wenzhou City, Zhejiang Province,China[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2022, 46(5): 20-26. | |
[18] |
胡会峰, 王志恒, 刘国华, 等. 中国主要灌丛植被碳储量[J]. 植物生态学报, 2006, 30(4):539-544.
DOI |
HU H F, WANG Z H, LIU G H, et al. Vegetation carbon storage of major shrublands in China[J]. Journal of Plant Ecology, 2006, 30(4): 539-544. |
[1] | ZHAO Yueran, FAN Gaojing, WU Jiaqi, SUN Weiping, PAN Jianming, HAN Zhengbing. The seasonal blooming characteristics of phytoplankton and POC export flux in the waters around South Georgia Island: Based on BGC-Argo and satellite remote sensing observations [J]. Journal of Marine Sciences, 2023, 41(4): 1-11. |
[2] | LIU Yuwei, YU Peisong, ZHENG Minhui, ZHAO Zhengjia, ZHANG Cai, HAN Chenhua. Effects of different vegetation types on the source and storage of organic carbon in muddy tidal flats: Taking Maoyan Island as an example [J]. Journal of Marine Sciences, 2023, 41(4): 94-101. |
[3] | GONG Fang, ZHU Bozhong, LI Teng, WANG Yuxin, LI Hongzhe, HE Xianqiang, ZHANG Qing. Remote sensing research on temporal and spatial variations of ecological environments and response for Tonga volcanic eruptions in South Pacific island countries [J]. Journal of Marine Sciences, 2023, 41(3): 101-114. |
[4] | NING Zihao, JIANG Changbo, LONG Yuannan, WU Zhiyuan, MA Yuan. Spatio-temporal evolution and driving factors analysis of the coastline in Nan’ao Island from 1976 to 2021 [J]. Journal of Marine Sciences, 2023, 41(2): 71-82. |
[5] | WU Liangxu, ZOU Huimin, CHEN Wei, XU Minghai, CAI Houcai, CHEN Shuyi, LI Xianglan. Assessment of carbon sink potential and driving factors of island forests on national nature reserve [J]. Journal of Marine Sciences, 2023, 41(1): 96-109. |
[6] | TONG Changliang, SONG Jiawei, DENG Kaizhang, HAN Xiaohui, WANG Aijun, WANG Yaping. Progress of marine sand resource exploration around Hainan Island and suggestions for selection of exploration areas [J]. Journal of Marine Sciences, 2022, 40(3): 33-48. |
[7] | SHEN Yuan, CHEN Xiangyu, ZHANG Xijiang, YE Yun, NI Yunlin. Wave diffraction from a 3D circular island [J]. Journal of Marine Sciences, 2022, 40(2): 62-68. |
[8] | ZHANG Yipu, YU Shuo, HUANG Daji, ZHOU Zebin, . Characteristics of tide, tidal current and their effects on nutrients in Xincun Lagoon, Hainan Island [J]. Journal of Marine Sciences, 2022, 40(2): 69-82. |
[9] | CAO Wenting, ZHANG Huaguo, LI Rui. Change characters of coastline and tidal flat in the islands with different principle functions in the Zhoushan Archipelago from 1986 to 2017 [J]. Journal of Marine Sciences, 2021, 39(4): 123-131. |
[10] | XIONG Yixuan, MA Shuchang, ZHANG Xiaoyu, HUANG Guorong, CHEN Jiaxing, HAN Yachao. Chlorophyll-a retrieval and eutrophication assessment of sea area around the Dajin Island based on multi-source remote sensing images [J]. Journal of Marine Sciences, 2021, 39(2): 43-51. |
[11] | LIU Hanren, LIAO Yibo, SHOU Lu, ZENG Jiangning, TANG Yanbin, LIU Qinghe, TAN Yonghua, L Duian, CHENG Jie. Study on diversity of rocky intertidal benthos community in uninhabited islands in Cangnan, Zhejiang [J]. Journal of Marine Sciences, 2021, 39(2): 68-79. |
[12] | LUAN Kuifeng, LIU Shuai, PAN Yujia, ZHU Weidong, LI Pixue, QIU Cheng, QIU Zhen'ge, SHEN Wei, WANG Jie, WANG Zhenhua. Research on shoreline extraction for high-resolution remote sensing image based on improved marked watershed algorithm [J]. Journal of Marine Sciences, 2021, 39(1): 20-28. |
[13] | FANG Mingbao, HUANG Jiayu, YANG Wankang, SUN Chunjian. The study on design basis flood level of island nuclear power plant [J]. Journal of Marine Sciences, 2020, 38(4): 80-87. |
[14] | TANG Ling, YANG Muzhuang, WANG Yinxia, GAO Yang, TIAN Song, DONG Di. Study on spatial distribution characteristics of islandsin Guangdong-Hong Kong-Macao Greater Bay Area [J]. Journal of Marine Sciences, 2020, 38(2): 74-80. |
[15] | ZHANG Yun, ZHANG Xiao, GONG Yan-jun, LIU Ming. Preliminary study on impact mechanism and assessment theory system of island ecosystem vulnerability: The cases study of islands in Liaoning Province [J]. Journal of Marine Sciences, 2019, 37(4): 68-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||