Acoustic characteristics of rocks from the SWIR hydrothermal fields

JIE Tianyu, ZHOU Jianping, TAO Chunhui, WANG Hanchuang, LI Qianyu, WU Tao, LIU Long

Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (1) : 1-12.

PDF(5498 KB)
PDF(5498 KB)
Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (1) : 1-12. DOI: 10.3969/j.issn.1001-909X.2024.01.001

Acoustic characteristics of rocks from the SWIR hydrothermal fields

Author information +
History +

Abstract

The hydrothermal fields of the Southwest Indian Ridge (SWIR) have the potential to develop large scale sulfide deposits, and the SWIR sulfide mineral resource evaluation is currently underway. Measurement and analysis of petrophysical characteristics such as P-wave velocity of sulfides and different host rocks are the basis for processing and interpretation of near-bottom seismic exploration data. Through the systematic measurement of the physical properties of sulfides and host rocks in the SWIR hydrothermal areas, we have analyzed the characteristics of rock P-wave velocity variation and its influencing factors by combining rock physical properties (including density, porosity, P-wave velocity) and minerals. The results show that the P-wave velocity of SWIR rocks is influenced by the rock skeleton minerals, pore space and confining pressure. Due to the overall small porosity of the rocks, the effect on P-wave velocity is not significant, but the increase of the confining pressure gradually closes the rock microfractures and pores, and the P-wave velocity varies non-linearly exponentially. The alteration causes the change of mineral composition, which is the most critical factor affecting the P-wave velocity of the confining rocks. The results of single physical parameter measurements may have multiple solutions, and the joint measurement of multiple physical parameters such as wave velocity, density, magnetic and electrical properties is beneficial for lithological differentiation. The research results help identifying sulfides and host rocks, and provide important support for the seismic exploration of polymetallic sulfides in the Southwest Indian Ocean contract area of China.

Key words

Southwest Indian Ridge / deep-sea hydrothermal fields / rock acoustic properties / petrophysical measurements / P-wave velocity

Cite this article

Download Citations
JIE Tianyu , ZHOU Jianping , TAO Chunhui , et al . Acoustic characteristics of rocks from the SWIR hydrothermal fields[J]. Journal of Marine Sciences. 2024, 42(1): 1-12 https://doi.org/10.3969/j.issn.1001-909X.2024.01.001

References

[1]
YU J Y, TAO C H, LIAO S L, et al. Resource estimation of the sulfide-rich deposits of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge[J]. Ore Geology Reviews, 2021, 134: 104169.
[2]
张涛, LIN Jian, 高金耀. 西南印度洋中脊热液区的岩浆活动与构造特征[J]. 中国科学:地球科学, 2013, 43(11):1834-1846.
ZHANG T, LIN J, GAO J Y. Magmatism and tectonic processes in Area A hydrothermal vent on the Southwest Indian Ridge[J]. Science China: Earth Sciences, 2013, 43(11): 1834-1846.
[3]
WU T, TIVEY M A, TAO C H, et al. An intermittent detachment faulting system with a large sulfide deposit revealed by multi-scale magnetic surveys[J]. Nature Communications, 2021, 12(1): 5642.
Magmatic and tectonic processes can contribute to discontinuous crustal accretion and play an important role in hydrothermal circulation at ultraslow-spreading ridges, however, it is difficult to accurately describe the processes without an age framework to constrain crustal evolution. Here we report on a multi-scale magnetic survey that provides constraints on the fine-scale evolution of a detachment faulting system that hosts hydrothermal activity at 49.7°E on the Southwest Indian Ridge. Reconstruction of the multi-stage detachment faulting history shows a previous episode of detachment faulting took place 0.76~1.48 My BP, while the present fault has been active for the past ~0.33 My and is just in the prime of life. This fault sustains hydrothermal circulation that has the potential for developing a large sulfide deposit. High resolution multiscale magnetics allows us to constrain the relative balance between periods of detachment faulting and magmatism to better describe accretionary processes on an ultraslow spreading ridge.© 2021. The Author(s).
[4]
ZHU Z, TAO C, SHEN J, et al. Self-potential tomography of a deep-sea polymetallic sulfide deposit on Southwest Indian Ridge[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(11): e2020JB019738.
[5]
JIAN H C, SINGH S C, CHEN Y J, et al. Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge[J]. Geology, 2017, 45(2): 143-146.
[6]
王伟, 牛雄伟, 阮爱国, 等. 西南印度洋中脊49.5°E离轴地壳结构[J]. 地球物理学报, 2018, 61(11):4406-4417.
Abstract
超慢速扩张西南印度洋中脊岩浆的集中供给在空间维度上表现为岩浆扩张段(NVR)与相邻的非转换断层不连续带(NTD)地壳结构的差异,而在时间维度上表现为离轴与沿轴地壳结构的差异.为了进一步揭示岩浆集中供给的时空分布特征,本文选取西南印度洋中脊热液区2010年海底地震仪深部探测中平行于洋中脊距轴部偏北约10 km的离轴测线d0d10,使用射线追踪正演和反演的方法,得到了NVR和NTD北侧离轴区域的地壳及上地幔P波速度结构,并与轴部速度结构进行了对比分析.研究结果表明:(1)NTD北侧离轴区域的地壳厚度约5.2 km,其厚度明显大于轴部NTD下方地壳厚度(~3.2 km),由此推测洋脊轴部NTD区域形成的地壳在不断减薄;(2)NVR北侧离轴区域的地壳厚度约7.0 km,其厚度亦大于轴部NVR地壳厚度(~5.8 km),表明在洋中脊演化过程中洋脊轴区域的岩浆供给在不断减少,其活动性在不断减弱.
WANG W, NIU X W, RUAN A G, et al. Off-axis crustal structure at the Southwest Indian Ridge (49.5°E)[J]. Chinese Journal of Geophysics, 2018, 61(11): 4406-4417.
[7]
MURTON B J, LEHRMANN B, DUTRIEUX A M, et al. Geological fate of seafloor massivesulphides at the TAG hydrothermal field (Mid-Atlantic Ridge)[J]. Ore Geology Reviews, 2019, 107: 903-925.
[8]
DOMENICO S N. Rock lithology and porosity determination from shear and compressional wave velocity[J]. Geophysics, 1984, 49(8): 1188-1195.
[9]
WILKENS R H, FRYER G J, KARSTEN J. Evolution of porosity and seismic structure of upper oceanic crust: Impor-tance of aspect ratios[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B11): 17981-17995.
[10]
黄威, 陶春辉, 邓显明, 等. 西南印度洋脊49°39'E热液活动区IODP钻探计划的科学意义[J]. 海洋学研究, 2009, 27(2):97-103.
HUANG W, TAO C H, DENG X M, et al. Discussion and the scientific significance of IODP drilling to study in the 49°39'E vent field in Southwest Indian Ridge[J]. Journal of Marine Sciences, 2009, 27(2): 97-103.
[11]
TAO C H, WU T, JIN X B, et al. Petrophysical charac-teristics of rocks and sulfides from the SWIR hydrothermal field[J]. Acta Oceanologica Sinica, 2013, 32(12): 118-125.
[12]
GEORGEN J E, LIN J, DICK H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets[J]. Earth and Planetary Science Letters, 2001, 187(3/4): 283-300.
[13]
陶春辉, 李怀明, 金肖兵, 等. 西南印度洋脊的海底热液活动和硫化物勘探[J]. 科学通报, 2014, 59(19):1812-1822.
TAO C H, LI H M, JIN X B, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge[J]. Chinese Science Bulletin, 2014, 59: 2266-2276.
[14]
BAKER E T, EDMONDS H N, MICHAEL P J, et al. Hydrothermal venting in magma deserts: The ultraslow-spreading Gakkel and Southwest Indian Ridges[J]. Geoche-mistry, Geophysics, Geosystems, 2004, 5(8): Q08002.
[15]
LI J B, JIAN H C, CHEN Y J, et al. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge[J]. Geophysical Research Letters, 2015, 42(8): 2656-2663.
[16]
TAO C H, LIN J, GUO S Q, et al. First active hydro-thermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology, 2012, 40(1): 47-50.
[17]
CANNAT M, SAUTER D, BEZOS A, et al. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04002.
[18]
SAUTER D, CANNAT M, MEYZEN C, et al. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20'E: Interaction with the Crozethotspot?[J]. Geophysical Journal International, 2009, 179(2): 687-699.
[19]
PLANKE S, CERNEY B, BÜCKER C J, et al. Alteration effects on petrophysical properties of subaerial flood basalts: Site 990, Southeast Greenland margin[C]// Proceedings of the Ocean Drilling Program, Scientific Results, 1999, 163: 17-28.
[20]
KASSAB M A, WELLER A. Study on P-wave and S-wave velocity in dry and wet sandstones of Tushka region, Egypt[J]. Egyptian Journal of Petroleum, 2015, 24(1): 1-11.
[21]
SPAGNOLI G, WEYMER B A, JEGEN M, et al. P-wave velocity measurements for preliminary assessments of the mineralization in seafloor massive sulfide mini-cores during drilling operations[J]. Engineering Geology, 2017, 226: 316-325.
[22]
GRÖSCHEL-BECKER H M, DAVIS E E, FRANKLIN J M. Data report: Physical properties of massive sulfide from site 856, middle valley, northern Juan de Fuca ridge[C]// Proceedings of the Ocean Drilling Program, Scientific Results, 1994, 139: 721-724.
[23]
WANG S S, CHANG L, WU T, et al. Progressive dissolution of titanomagnetite in high-temperature hydrothermal vents dramatically reduces magnetization of basaltic ocean crust[J]. Geophysical Research Letters, 2020, 47(8): e87578.
[24]
刘隆, 周建平, 吴涛, 等. 大洋中脊玄武岩磁性特征[J]. 地球物理学进展, 2021, 36(5):1880-1890.
LIU L, ZHOU J P, WU T, et al. Magnetic characteristics of basalt on mid-ocean ridge[J]. Progress in Geophysics, 2021, 36(5): 1880-1890.
[25]
JOHNSTON J E, FRYER G J, CHRISTENSEN N I. Velocity-porosity relationships of basalts from the East Pacific Rise[C]// Proceedings of the Ocean Drilling Program, Scientific results, 1995, 142: 51-59.
[26]
CARLSON R L. The effect of hydrothermal alteration on the seismic structure of the upper oceanic crust: Evidence from Holes 504B and 1256D[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(9): Q09013.
[27]
CARLSON R L. The effects of alteration and porosity on seismic velocities in oceanic basalts and diabases[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4589-4598.
[28]
LUDWIG R J, ITURRINO G J, RONA P A. Seismic velocity-porosity relationship of sulfide, sulfate, and basalt samples from the TAG hydrothermal mound[C]// Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 158: 313-328.
[29]
TSUJI T, ITURRINO G J. Velocity-porosity relationships in oceanic basalt from eastern flank of the Juan de Fuca Ridge: The effect of crack closure on seismic velocity[J]. Exploration Geophysics, 2008, 39(1): 41-51.
[30]
CHRISTENSEN N I, WEPFER W W, BAUD R D. Seismic properties of sheeted dikes from Hole 504B, ODP Leg 111[C]// Proceedings of the Ocean Drilling Program, Scientific results, 1989, 111: 171-176.
[31]
CHEN H, TAO C, REVIL A, et al. Induced polarization and magnetic responses of serpentinized ultramafic rocks from mid-ocean ridges[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(12): e2021JB022915.
[32]
CARLSON R L, JAY MILLER D. Influence of pressure and mineralogy on seismic velocities in oceanicgabbros: Implications for the composition and state of the lower oceanic crust[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B9): B09205.
[33]
CHRISTENSEN N I. Elasticity of ultrabasic rocks[J]. Journal of Geophysical Research, 1966, 71(24): 5921-5931.
[34]
SEYLER M, CANNAT M, MÉVEL C. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E)[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(2):9101.
[35]
徐浩波, 管清胜, 许明珠, 等. 蛇纹岩化作用对超慢速洋中脊拆离断层发育的影响[J]. 海洋学研究, 2021, 39(3):21-30.
XU H B, GUAN Q S, XU M Z, et al. The effect of serpentinization on detachment faults at ultra-slow spreading mid-ocean ridge[J]. Journal of Marine Sciences, 2021, 39(3): 21-30.
在超慢速扩张的洋中脊区域,广泛发育的拆离断层将幔源橄榄岩大规模拆离到海底表面,上升出露的橄榄岩发生蛇纹岩化作用,极大地降低了岩石强度,促进了拆离断层的持续滑动,形成独特的光滑地形。本文利用快速拉格朗日连续介质分析法模拟研究蛇纹岩化作用对超慢速洋中脊拆离断层发育的影响。通过对比有蛇纹岩化作用和无蛇纹岩化作用下拆离断层发育的生命周期和力学差异,发现在蛇纹岩化作用下,岩石圈生成断层所需要应力降低了40%,导致断层下盘极易产生与原断层倾向相反的新断层;蛇纹岩化导致断层滑动摩擦力减小,有利于断层的持续滑动。理解蛇纹岩化作用和断层发育的关系对认识超慢速洋脊段末端的扩张机制具有重要意义。
[36]
KHAKSAR, GRIFFITHS, MCCANN. Compressional- and shear-wave velocities as a function of confining stress in dry sandstones[J]. Geophysical Prospecting, 1999, 47(4): 487-508.
[37]
EBERHART-PHILLIPS D, HAN D H, ZOBACK M D. Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone[J]. Geophysics, 1989, 54(1): 82-89.
[38]
FREUND D. Ultrasonic compressional and shear velocities in dry clastic rocks as a function of porosity, clay content, and confining pressure[J]. Geophysical Journal International, 1992, 108(1): 125-135.
[39]
JONES S M. Velocities and quality factors of sedimentary rocks at low and high effective pressures[J]. Geophysical Journal International, 1995, 123(3): 774-780.
[40]
BIRCH F. The velocity of compressional waves in rocks to 10 kilobars: 1[J]. Journal of Geophysical Research, 1960, 65(4): 1083-1102.
PDF(5498 KB)

Accesses

Citation

Detail

Sections
Recommended

/