Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (1): 1-12.DOI: 10.3969/j.issn.1001-909X.2024.01.001
JIE Tianyu1,2(), ZHOU Jianping1,2,3,*(), TAO Chunhui1,2, WANG Hanchuang1,2, LI Qianyu1,2,4, WU Tao1,2, LIU Long5
Received:
2022-11-27
Revised:
2023-05-18
Online:
2024-03-15
Published:
2024-05-11
CLC Number:
JIE Tianyu, ZHOU Jianping, TAO Chunhui, WANG Hanchuang, LI Qianyu, WU Tao, LIU Long. Acoustic characteristics of rocks from the SWIR hydrothermal fields[J]. Journal of Marine Sciences, 2024, 42(1): 1-12.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.01.001
序号 | 样品类型 | 石英 | 斜长石 | 方解石 | 黄铁矿 | 蛇纹石 | 辉石 | 角闪石 | 磁铁矿 | 橄榄石 | 黏土矿物总量 |
---|---|---|---|---|---|---|---|---|---|---|---|
B1 | 新鲜玄武岩 | 0 | 73.7 | 0 | 0 | 0 | 16.9 | 0 | 0 | 0 | 9.4 |
B2 | 新鲜玄武岩 | 0 | 84.2 | 0 | 0 | 0 | 10.1 | 0 | 0 | 2.0 | 3.7 |
B3 | 新鲜玄武岩 | 0 | 80.7 | 0 | 0 | 0 | 12.6 | 0 | 0 | 3.7 | 3.0 |
B4 | 新鲜玄武岩 | 0 | 68.6 | 0 | 0 | 0 | 20.1 | 0 | 0 | 11.3 | 0 |
B5 | 新鲜玄武岩 | 1.6 | 75.6 | 0 | 0 | 0 | 19.0 | 0 | 0 | 3.8 | 0 |
AB1 | 蚀变玄武岩 | 8.7 | 16.6 | 0 | 0 | 0 | 2.0 | 4.6 | 0 | 0 | 68.1 |
AB2 | 蚀变玄武岩 | 48.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 51.6 |
AB3 | 蚀变玄武岩 | 71.1 | 1.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26.2 |
AB4 | 蚀变玄武岩 | 31.6 | 13.2 | 0 | 0 | 0 | 1.5 | 0 | 0 | 0 | 53.7 |
AB5 | 蚀变玄武岩 | 6.9 | 19.1 | 0 | 0 | 0 | 3.4 | 1.8 | 0 | 0 | 67.4 |
AB6 | 蚀变玄武岩 | 48.2 | 15.4 | 0 | 0 | 0 | 1.7 | 1.4 | 0 | 0 | 31.8 |
AB7 | 蚀变玄武岩 | 1.7 | 24.9 | 0 | 0 | 0 | 2.3 | 4.4 | 0 | 0 | 65.3 |
SR1 | 蛇纹岩 | 0 | 0 | 0 | 0 | 61.8 | 11.4 | 0 | 26.8 | 0 | 0 |
SR2 | 蛇纹岩 | 0 | 0 | 0 | 0 | 75.6 | 4.1 | 4.9 | 15.4 | 0 | 0 |
SR3 | 蛇纹岩 | 0 | 0 | 0 | 0 | 82.4 | 0 | 0 | 17.6 | 0 | 0 |
SR4 | 蛇纹岩 | 0 | 0 | 0 | 0 | 45.9 | 0 | 0 | 24.8 | 0 | 29.3 |
D1 | 辉绿岩 | 1.5 | 69.1 | 0 | 0 | 0 | 2.9 | 12.6 | 3.9 | 0 | 5.8 |
G1 | 辉长岩 | 1.2 | 66.8 | 0 | 0 | 0 | 4.1 | 19.7 | 3.2 | 0 | 2.5 |
G2 | 辉长岩 | 0.7 | 64.9 | 0 | 0 | 0 | 8.1 | 7.6 | 2.7 | 0 | 2.5 |
S1 | 硫化物 | 0 | 0 | 39.3 | 60.7 | 0 | 0 | 0 | 0 | 0 | 0 |
S2 | 硫化物 | 0 | 0 | 1.9 | 18.7 | 0 | 0 | 0 | 0 | 0 | 0 |
S3 | 硫化物 | 0 | 0 | 5.1 | 94.9 | 0 | 0 | 0 | 0 | 0 | 0 |
S4 | 硫化物 | 1.4 | 0 | 0 | 85.1 | 0 | 0 | 0 | 0 | 0 | 0 |
S5 | 硫化物 | 0.7 | 0 | 22.5 | 61.8 | 0 | 0 | 0 | 0 | 0 | 0 |
Tab.1
序号 | 样品类型 | 石英 | 斜长石 | 方解石 | 黄铁矿 | 蛇纹石 | 辉石 | 角闪石 | 磁铁矿 | 橄榄石 | 黏土矿物总量 |
---|---|---|---|---|---|---|---|---|---|---|---|
B1 | 新鲜玄武岩 | 0 | 73.7 | 0 | 0 | 0 | 16.9 | 0 | 0 | 0 | 9.4 |
B2 | 新鲜玄武岩 | 0 | 84.2 | 0 | 0 | 0 | 10.1 | 0 | 0 | 2.0 | 3.7 |
B3 | 新鲜玄武岩 | 0 | 80.7 | 0 | 0 | 0 | 12.6 | 0 | 0 | 3.7 | 3.0 |
B4 | 新鲜玄武岩 | 0 | 68.6 | 0 | 0 | 0 | 20.1 | 0 | 0 | 11.3 | 0 |
B5 | 新鲜玄武岩 | 1.6 | 75.6 | 0 | 0 | 0 | 19.0 | 0 | 0 | 3.8 | 0 |
AB1 | 蚀变玄武岩 | 8.7 | 16.6 | 0 | 0 | 0 | 2.0 | 4.6 | 0 | 0 | 68.1 |
AB2 | 蚀变玄武岩 | 48.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 51.6 |
AB3 | 蚀变玄武岩 | 71.1 | 1.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26.2 |
AB4 | 蚀变玄武岩 | 31.6 | 13.2 | 0 | 0 | 0 | 1.5 | 0 | 0 | 0 | 53.7 |
AB5 | 蚀变玄武岩 | 6.9 | 19.1 | 0 | 0 | 0 | 3.4 | 1.8 | 0 | 0 | 67.4 |
AB6 | 蚀变玄武岩 | 48.2 | 15.4 | 0 | 0 | 0 | 1.7 | 1.4 | 0 | 0 | 31.8 |
AB7 | 蚀变玄武岩 | 1.7 | 24.9 | 0 | 0 | 0 | 2.3 | 4.4 | 0 | 0 | 65.3 |
SR1 | 蛇纹岩 | 0 | 0 | 0 | 0 | 61.8 | 11.4 | 0 | 26.8 | 0 | 0 |
SR2 | 蛇纹岩 | 0 | 0 | 0 | 0 | 75.6 | 4.1 | 4.9 | 15.4 | 0 | 0 |
SR3 | 蛇纹岩 | 0 | 0 | 0 | 0 | 82.4 | 0 | 0 | 17.6 | 0 | 0 |
SR4 | 蛇纹岩 | 0 | 0 | 0 | 0 | 45.9 | 0 | 0 | 24.8 | 0 | 29.3 |
D1 | 辉绿岩 | 1.5 | 69.1 | 0 | 0 | 0 | 2.9 | 12.6 | 3.9 | 0 | 5.8 |
G1 | 辉长岩 | 1.2 | 66.8 | 0 | 0 | 0 | 4.1 | 19.7 | 3.2 | 0 | 2.5 |
G2 | 辉长岩 | 0.7 | 64.9 | 0 | 0 | 0 | 8.1 | 7.6 | 2.7 | 0 | 2.5 |
S1 | 硫化物 | 0 | 0 | 39.3 | 60.7 | 0 | 0 | 0 | 0 | 0 | 0 |
S2 | 硫化物 | 0 | 0 | 1.9 | 18.7 | 0 | 0 | 0 | 0 | 0 | 0 |
S3 | 硫化物 | 0 | 0 | 5.1 | 94.9 | 0 | 0 | 0 | 0 | 0 | 0 |
S4 | 硫化物 | 1.4 | 0 | 0 | 85.1 | 0 | 0 | 0 | 0 | 0 | 0 |
S5 | 硫化物 | 0.7 | 0 | 22.5 | 61.8 | 0 | 0 | 0 | 0 | 0 | 0 |
岩石类型 | 样品数量 | 数据统计 | 饱水密度/(g·cm-3) | 孔隙度/% | P波速度/ (m·s-1) | ||||
---|---|---|---|---|---|---|---|---|---|
常压 | 5 MPa | 10 MPa | 20 MPa | 30 MPa | |||||
新鲜玄武岩 | 74 | 平均值 | 2.85 | 0.60 | 5 826 | 5 914 | 5 932 | 5 991 | 6 045 |
最大值 | 2.93 | 3.69 | 6 552 | 6 589 | 6 626 | 6 651 | 6 762 | ||
最小值 | 2.68 | 0 | 4 911 | 5 058 | 5 136 | 5 249 | 5 343 | ||
标准差 | 0.05 | 0.87 | 360 | 329 | 347 | 337 | 328 | ||
蚀变玄武岩 | 19 | 平均值 | 2.69 | 1.37 | 4 929 | 5 166 | 5 054 | 5 114 | 5 162 |
最大值 | 2.96 | 2.76 | 6 754 | 6 828 | 6 929 | 7 033 | 7 086 | ||
最小值 | 2.51 | 0 | 3 968 | 4 044 | 4 097 | 4 150 | 4 178 | ||
标准差 | 0.12 | 0.69 | 841 | 915 | 831 | 835 | 829 | ||
蛇纹岩 | 4 | 平均值 | 2.58 | 0.13 | 4 945 | 5 007 | 5 068 | 5 105 | 5 134 |
最大值 | 2.63 | 0.30 | 5 289 | 5 324 | 5 383 | 5 431 | 5 467 | ||
最小值 | 2.54 | 0 | 4 529 | 4 632 | 4 712 | 4 914 | 4 785 | ||
标准差 | 0.04 | 0.14 | 362 | 337 | 326 | 326 | 326 | ||
辉长岩 | 3 | 平均值 | 2.91 | 0.28 | 5 812 | 5 988 | 5 990 | 6 076 | 6 195 |
最大值 | 2.97 | 0.84 | 6 363 | 6 568 | 6 732 | 6 816 | 6 962 | ||
最小值 | 2.81 | 0 | 5 376 | 5 407 | 5 471 | 5 537 | 5 638 | ||
标准差 | 0.09 | 0.49 | 503 | 821 | 659 | 663 | 687 | ||
硫化物(块状硫化 物和硫化物烟囱) | 5 | 平均值 | 2.93 | 20.02 | 3 935 | ||||
最大值 | 3.23 | 28.72 | |||||||
最小值 | 1.80 | 9.65 | |||||||
标准差 | 0.56 | 6.57 |
Tab.2 Physical properties of rock samples in the study area
岩石类型 | 样品数量 | 数据统计 | 饱水密度/(g·cm-3) | 孔隙度/% | P波速度/ (m·s-1) | ||||
---|---|---|---|---|---|---|---|---|---|
常压 | 5 MPa | 10 MPa | 20 MPa | 30 MPa | |||||
新鲜玄武岩 | 74 | 平均值 | 2.85 | 0.60 | 5 826 | 5 914 | 5 932 | 5 991 | 6 045 |
最大值 | 2.93 | 3.69 | 6 552 | 6 589 | 6 626 | 6 651 | 6 762 | ||
最小值 | 2.68 | 0 | 4 911 | 5 058 | 5 136 | 5 249 | 5 343 | ||
标准差 | 0.05 | 0.87 | 360 | 329 | 347 | 337 | 328 | ||
蚀变玄武岩 | 19 | 平均值 | 2.69 | 1.37 | 4 929 | 5 166 | 5 054 | 5 114 | 5 162 |
最大值 | 2.96 | 2.76 | 6 754 | 6 828 | 6 929 | 7 033 | 7 086 | ||
最小值 | 2.51 | 0 | 3 968 | 4 044 | 4 097 | 4 150 | 4 178 | ||
标准差 | 0.12 | 0.69 | 841 | 915 | 831 | 835 | 829 | ||
蛇纹岩 | 4 | 平均值 | 2.58 | 0.13 | 4 945 | 5 007 | 5 068 | 5 105 | 5 134 |
最大值 | 2.63 | 0.30 | 5 289 | 5 324 | 5 383 | 5 431 | 5 467 | ||
最小值 | 2.54 | 0 | 4 529 | 4 632 | 4 712 | 4 914 | 4 785 | ||
标准差 | 0.04 | 0.14 | 362 | 337 | 326 | 326 | 326 | ||
辉长岩 | 3 | 平均值 | 2.91 | 0.28 | 5 812 | 5 988 | 5 990 | 6 076 | 6 195 |
最大值 | 2.97 | 0.84 | 6 363 | 6 568 | 6 732 | 6 816 | 6 962 | ||
最小值 | 2.81 | 0 | 5 376 | 5 407 | 5 471 | 5 537 | 5 638 | ||
标准差 | 0.09 | 0.49 | 503 | 821 | 659 | 663 | 687 | ||
硫化物(块状硫化 物和硫化物烟囱) | 5 | 平均值 | 2.93 | 20.02 | 3 935 | ||||
最大值 | 3.23 | 28.72 | |||||||
最小值 | 1.80 | 9.65 | |||||||
标准差 | 0.56 | 6.57 |
Fig.9 Correlation between P-wave velocity and saturated density of basalts (The data of SWIR is the test result of this article; the data of U1301 are from reference [29]; the data of 504B are from reference [30]; the data of ODP Site 864 are from reference [25].)
Fig.10 Correlation between saturated density (a) and porosity (b) with P-wave velocity of massive sulfides in different study areas (Partial data of SWIR study area are from reference [11]; the data of TAG study area are from reference [28]; the data of EPR and OT study area are from reference [26]; the global data of researcher Spagnoli are from reference [21].)
数据统计 | 方程(3) | 方程(2) | ||||
---|---|---|---|---|---|---|
R2 | R2 | a | b | c | ||
平均值 | 0.935 | 0.991 | 6 053 | 317 | 0.05 | |
最大值 | 0.990 | 0.998 | 7 189 | 1 037 | 0.13 | |
最小值 | 0.822 | 0.991 | 4 781 | 111 | 0.01 | |
标准差 | 0.047 | 0.003 | 491 | 175 | 0.03 |
Tab.3 The correlation coefficient R2 of equation (2) and (3) and the regression coefficient a, b, c of equation (2)
数据统计 | 方程(3) | 方程(2) | ||||
---|---|---|---|---|---|---|
R2 | R2 | a | b | c | ||
平均值 | 0.935 | 0.991 | 6 053 | 317 | 0.05 | |
最大值 | 0.990 | 0.998 | 7 189 | 1 037 | 0.13 | |
最小值 | 0.822 | 0.991 | 4 781 | 111 | 0.01 | |
标准差 | 0.047 | 0.003 | 491 | 175 | 0.03 |
[1] | YU J Y, TAO C H, LIAO S L, et al. Resource estimation of the sulfide-rich deposits of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge[J]. Ore Geology Reviews, 2021, 134: 104169. |
[2] | 张涛, LIN Jian, 高金耀. 西南印度洋中脊热液区的岩浆活动与构造特征[J]. 中国科学:地球科学, 2013, 43(11):1834-1846. |
ZHANG T, LIN J, GAO J Y. Magmatism and tectonic processes in Area A hydrothermal vent on the Southwest Indian Ridge[J]. Science China: Earth Sciences, 2013, 43(11): 1834-1846. | |
[3] |
WU T, TIVEY M A, TAO C H, et al. An intermittent detachment faulting system with a large sulfide deposit revealed by multi-scale magnetic surveys[J]. Nature Communications, 2021, 12(1): 5642.
DOI PMID |
[4] | ZHU Z, TAO C, SHEN J, et al. Self-potential tomography of a deep-sea polymetallic sulfide deposit on Southwest Indian Ridge[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(11): e2020JB019738. |
[5] | JIAN H C, SINGH S C, CHEN Y J, et al. Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge[J]. Geology, 2017, 45(2): 143-146. |
[6] |
王伟, 牛雄伟, 阮爱国, 等. 西南印度洋中脊49.5°E离轴地壳结构[J]. 地球物理学报, 2018, 61(11):4406-4417.
DOI |
WANG W, NIU X W, RUAN A G, et al. Off-axis crustal structure at the Southwest Indian Ridge (49.5°E)[J]. Chinese Journal of Geophysics, 2018, 61(11): 4406-4417. | |
[7] | MURTON B J, LEHRMANN B, DUTRIEUX A M, et al. Geological fate of seafloor massivesulphides at the TAG hydrothermal field (Mid-Atlantic Ridge)[J]. Ore Geology Reviews, 2019, 107: 903-925. |
[8] | DOMENICO S N. Rock lithology and porosity determination from shear and compressional wave velocity[J]. Geophysics, 1984, 49(8): 1188-1195. |
[9] | WILKENS R H, FRYER G J, KARSTEN J. Evolution of porosity and seismic structure of upper oceanic crust: Impor-tance of aspect ratios[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B11): 17981-17995. |
[10] | 黄威, 陶春辉, 邓显明, 等. 西南印度洋脊49°39'E热液活动区IODP钻探计划的科学意义[J]. 海洋学研究, 2009, 27(2):97-103. |
HUANG W, TAO C H, DENG X M, et al. Discussion and the scientific significance of IODP drilling to study in the 49°39'E vent field in Southwest Indian Ridge[J]. Journal of Marine Sciences, 2009, 27(2): 97-103. | |
[11] | TAO C H, WU T, JIN X B, et al. Petrophysical charac-teristics of rocks and sulfides from the SWIR hydrothermal field[J]. Acta Oceanologica Sinica, 2013, 32(12): 118-125. |
[12] | GEORGEN J E, LIN J, DICK H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets[J]. Earth and Planetary Science Letters, 2001, 187(3/4): 283-300. |
[13] | 陶春辉, 李怀明, 金肖兵, 等. 西南印度洋脊的海底热液活动和硫化物勘探[J]. 科学通报, 2014, 59(19):1812-1822. |
TAO C H, LI H M, JIN X B, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge[J]. Chinese Science Bulletin, 2014, 59: 2266-2276. | |
[14] | BAKER E T, EDMONDS H N, MICHAEL P J, et al. Hydrothermal venting in magma deserts: The ultraslow-spreading Gakkel and Southwest Indian Ridges[J]. Geoche-mistry, Geophysics, Geosystems, 2004, 5(8): Q08002. |
[15] | LI J B, JIAN H C, CHEN Y J, et al. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge[J]. Geophysical Research Letters, 2015, 42(8): 2656-2663. |
[16] | TAO C H, LIN J, GUO S Q, et al. First active hydro-thermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology, 2012, 40(1): 47-50. |
[17] | CANNAT M, SAUTER D, BEZOS A, et al. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04002. |
[18] | SAUTER D, CANNAT M, MEYZEN C, et al. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20'E: Interaction with the Crozethotspot?[J]. Geophysical Journal International, 2009, 179(2): 687-699. |
[19] | PLANKE S, CERNEY B, BÜCKER C J, et al. Alteration effects on petrophysical properties of subaerial flood basalts: Site 990, Southeast Greenland margin[C]// Proceedings of the Ocean Drilling Program, Scientific Results, 1999, 163: 17-28. |
[20] | KASSAB M A, WELLER A. Study on P-wave and S-wave velocity in dry and wet sandstones of Tushka region, Egypt[J]. Egyptian Journal of Petroleum, 2015, 24(1): 1-11. |
[21] | SPAGNOLI G, WEYMER B A, JEGEN M, et al. P-wave velocity measurements for preliminary assessments of the mineralization in seafloor massive sulfide mini-cores during drilling operations[J]. Engineering Geology, 2017, 226: 316-325. |
[22] | GRÖSCHEL-BECKER H M, DAVIS E E, FRANKLIN J M. Data report: Physical properties of massive sulfide from site 856, middle valley, northern Juan de Fuca ridge[C]// Proceedings of the Ocean Drilling Program, Scientific Results, 1994, 139: 721-724. |
[23] | WANG S S, CHANG L, WU T, et al. Progressive dissolution of titanomagnetite in high-temperature hydrothermal vents dramatically reduces magnetization of basaltic ocean crust[J]. Geophysical Research Letters, 2020, 47(8): e87578. |
[24] | 刘隆, 周建平, 吴涛, 等. 大洋中脊玄武岩磁性特征[J]. 地球物理学进展, 2021, 36(5):1880-1890. |
LIU L, ZHOU J P, WU T, et al. Magnetic characteristics of basalt on mid-ocean ridge[J]. Progress in Geophysics, 2021, 36(5): 1880-1890. | |
[25] | JOHNSTON J E, FRYER G J, CHRISTENSEN N I. Velocity-porosity relationships of basalts from the East Pacific Rise[C]// Proceedings of the Ocean Drilling Program, Scientific results, 1995, 142: 51-59. |
[26] | CARLSON R L. The effect of hydrothermal alteration on the seismic structure of the upper oceanic crust: Evidence from Holes 504B and 1256D[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(9): Q09013. |
[27] | CARLSON R L. The effects of alteration and porosity on seismic velocities in oceanic basalts and diabases[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4589-4598. |
[28] | LUDWIG R J, ITURRINO G J, RONA P A. Seismic velocity-porosity relationship of sulfide, sulfate, and basalt samples from the TAG hydrothermal mound[C]// Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 158: 313-328. |
[29] | TSUJI T, ITURRINO G J. Velocity-porosity relationships in oceanic basalt from eastern flank of the Juan de Fuca Ridge: The effect of crack closure on seismic velocity[J]. Exploration Geophysics, 2008, 39(1): 41-51. |
[30] | CHRISTENSEN N I, WEPFER W W, BAUD R D. Seismic properties of sheeted dikes from Hole 504B, ODP Leg 111[C]// Proceedings of the Ocean Drilling Program, Scientific results, 1989, 111: 171-176. |
[31] | CHEN H, TAO C, REVIL A, et al. Induced polarization and magnetic responses of serpentinized ultramafic rocks from mid-ocean ridges[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(12): e2021JB022915. |
[32] | CARLSON R L, JAY MILLER D. Influence of pressure and mineralogy on seismic velocities in oceanicgabbros: Implications for the composition and state of the lower oceanic crust[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B9): B09205. |
[33] | CHRISTENSEN N I. Elasticity of ultrabasic rocks[J]. Journal of Geophysical Research, 1966, 71(24): 5921-5931. |
[34] | SEYLER M, CANNAT M, MÉVEL C. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E)[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(2):9101. |
[35] | 徐浩波, 管清胜, 许明珠, 等. 蛇纹岩化作用对超慢速洋中脊拆离断层发育的影响[J]. 海洋学研究, 2021, 39(3):21-30. |
XU H B, GUAN Q S, XU M Z, et al. The effect of serpentinization on detachment faults at ultra-slow spreading mid-ocean ridge[J]. Journal of Marine Sciences, 2021, 39(3): 21-30.
DOI |
|
[36] | KHAKSAR, GRIFFITHS, MCCANN. Compressional- and shear-wave velocities as a function of confining stress in dry sandstones[J]. Geophysical Prospecting, 1999, 47(4): 487-508. |
[37] | EBERHART-PHILLIPS D, HAN D H, ZOBACK M D. Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone[J]. Geophysics, 1989, 54(1): 82-89. |
[38] | FREUND D. Ultrasonic compressional and shear velocities in dry clastic rocks as a function of porosity, clay content, and confining pressure[J]. Geophysical Journal International, 1992, 108(1): 125-135. |
[39] | JONES S M. Velocities and quality factors of sedimentary rocks at low and high effective pressures[J]. Geophysical Journal International, 1995, 123(3): 774-780. |
[40] | BIRCH F. The velocity of compressional waves in rocks to 10 kilobars: 1[J]. Journal of Geophysical Research, 1960, 65(4): 1083-1102. |
[1] | WANG Zhen-bo, WU Guang-hai , HAN Chen-hua. Geochemical characteristics of hydrothermal deposits and basalts at 49.6°E on the Southwest Indian Ridge [J]. Journal of Marine Sciences, 2014, 32(1): 64-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||