Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (1): 58-68.DOI: 10.3969/j.issn.1001-909X.2024.01.006
Previous Articles Next Articles
ZHANG Xudong1(), QIU Zhongfeng1,*(), MAO Kefeng2, WANG Penghao2
Received:
2023-02-15
Revised:
2023-04-17
Online:
2024-03-15
Published:
2024-05-11
CLC Number:
ZHANG Xudong, QIU Zhongfeng, MAO Kefeng, WANG Penghao. Composed structure of mesoscale eddy in the Northwest Pacific Ocean and its influence on acoustic propagation[J]. Journal of Marine Sciences, 2024, 42(1): 58-68.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.01.006
Fig.2 The distribution of SLA and eddy in the Northwest Pacific Ocean (2015-10-18) (Figure b shows that Argo buoy is located outside the eddy; Figure c shows that Argo buoy is located inside the eddy; the closed curve represents the eddy boundary; red dot represents the center of the eddy; the black dot represents the Argo buoy location; the ΔxE represents the meridional distance from Argo buoy to the eddy center, and the ΔyE represents the zonal distance.)
区域 | 子区域 | Argo剖面资料数量 | |
---|---|---|---|
与暖涡匹配/条 | 与冷涡匹配/条 | ||
区域Ⅰ 黑潮延伸体 | A | 736 | 494 |
B | 736 | 388 | |
C | 376 | 354 | |
D | 309 | 229 | |
E | 287 | 259 | |
区域Ⅱ 亲潮延伸体 | F | 280 | 413 |
G | 509 | 302 | |
H | 267 | 222 | |
I | 147 | 105 |
Tab.1 Number of Argo profiles conforming to the matching conditions in 9 subregions of the Northwest Pacific Ocean
区域 | 子区域 | Argo剖面资料数量 | |
---|---|---|---|
与暖涡匹配/条 | 与冷涡匹配/条 | ||
区域Ⅰ 黑潮延伸体 | A | 736 | 494 |
B | 736 | 388 | |
C | 376 | 354 | |
D | 309 | 229 | |
E | 287 | 259 | |
区域Ⅱ 亲潮延伸体 | F | 280 | 413 |
G | 509 | 302 | |
H | 267 | 222 | |
I | 147 | 105 |
Fig.6 Sound velocity profiles at the eddy center under without eddy, cold eddy and warm eddy background in the 9 subregions of the Northwest Pacific Ocean
区域 | 环境背景 | 最大声速差 /dB | 会聚区与声源的距离/km | 会聚区宽度/km | 反转深度/m | ||||
---|---|---|---|---|---|---|---|---|---|
d1 | d2 | W1 | W2 | ||||||
区域I 黑潮延伸体 | A | 无涡旋 | 62.25 | 123.24 | 8.34 | 8.82 | 4 026 | ||
冷涡 | 4.042 | 61.63 | 122.05 | 8.10 | 8.60 | 3 927 | |||
暖涡 | 10.867 | 64.07 | 127.09 | 8.68 | 9.44 | 4 058 | |||
B | 无涡旋 | 62.05 | 122.80 | 8.12 | 8.52 | 3 885 | |||
冷涡 | 9.539 | 60.60 | 119.83 | 7.84 | 7.98 | 3 831 | |||
暖涡 | 7.958 | 63.52 | 125.78 | 8.37 | 8.98 | 3 961 | |||
C | 无涡旋 | 61.40 | 121.76 | 8.03 | 8.26 | 3 820 | |||
冷涡 | 14.457 | 59.02 | 116.90 | 7.61 | 7.59 | 3 625 | |||
暖涡 | 6.519 | 62.64 | 124.21 | 8.22 | 8.59 | 3 847 | |||
D | 无涡旋 | 61.05 | 121.03 | 7.55 | 8.03 | 3 809 | |||
冷涡 | 6.957 | 59.87 | 118.38 | 7.35 | 7.60 | 3 670 | |||
暖涡 | 3.254 | 61.48 | 121.95 | 7.66 | 8.45 | 3 831 | |||
E | 无涡旋 | 59.65 | 119.00 | 7.33 | 7.9 | 3 744 | |||
冷涡 | 5.526 | 58.80 | 117.68 | 7.29 | 7.64 | 3 654 | |||
暖涡 | 1.978 | 59.83 | 119.51 | 7.44 | 8.12 | 3 821 | |||
区域Ⅱ 亲潮延伸体 | F | 无涡旋 | 45.12 | 85.82 | 5.72 | 8.86 | 1 742 | ||
冷涡 | 16.106 | ||||||||
暖涡 | 4.094 | 45.74 | 86.15 | 5.81 | 6.32 | 1 763 | |||
G | 无涡旋 | 50.22 | 92.56 | 6.65 | 7.10 | 2 189 | |||
冷涡 | 10.023 | 42.24 | 85.54 | 5.42 | 5.62 | 1 948 | |||
暖涡 | 3.222 | 45.93 | 93.92 | 6.84 | 7.40 | 2 229 | |||
H | 无涡旋 | 44.96 | 93.85 | 7.01 | 7.64 | 2 328 | |||
冷涡 | 8.884 | 44.02 | 91.56 | 5.80 | 6.26 | 2 119 | |||
暖涡 | 7.227 | 47.52 | 97.13 | 7.64 | 8.43 | 2 376 | |||
I | 无涡旋 | 48.40 | 99.55 | 7.17 | 7.74 | 2 461 | |||
冷涡 | 7.563 | 45.97 | 97.16 | 6.07 | 6.31 | 2 167 | |||
暖涡 | 2.048 | 48.75 | 100.94 | 7.34 | 8.12 | 2 480 |
Tab.2 Location and width of convergence zone under the background of warm eddy, cold eddy and without eddy in 9 subregions of the Northwest Pacific Ocean
区域 | 环境背景 | 最大声速差 /dB | 会聚区与声源的距离/km | 会聚区宽度/km | 反转深度/m | ||||
---|---|---|---|---|---|---|---|---|---|
d1 | d2 | W1 | W2 | ||||||
区域I 黑潮延伸体 | A | 无涡旋 | 62.25 | 123.24 | 8.34 | 8.82 | 4 026 | ||
冷涡 | 4.042 | 61.63 | 122.05 | 8.10 | 8.60 | 3 927 | |||
暖涡 | 10.867 | 64.07 | 127.09 | 8.68 | 9.44 | 4 058 | |||
B | 无涡旋 | 62.05 | 122.80 | 8.12 | 8.52 | 3 885 | |||
冷涡 | 9.539 | 60.60 | 119.83 | 7.84 | 7.98 | 3 831 | |||
暖涡 | 7.958 | 63.52 | 125.78 | 8.37 | 8.98 | 3 961 | |||
C | 无涡旋 | 61.40 | 121.76 | 8.03 | 8.26 | 3 820 | |||
冷涡 | 14.457 | 59.02 | 116.90 | 7.61 | 7.59 | 3 625 | |||
暖涡 | 6.519 | 62.64 | 124.21 | 8.22 | 8.59 | 3 847 | |||
D | 无涡旋 | 61.05 | 121.03 | 7.55 | 8.03 | 3 809 | |||
冷涡 | 6.957 | 59.87 | 118.38 | 7.35 | 7.60 | 3 670 | |||
暖涡 | 3.254 | 61.48 | 121.95 | 7.66 | 8.45 | 3 831 | |||
E | 无涡旋 | 59.65 | 119.00 | 7.33 | 7.9 | 3 744 | |||
冷涡 | 5.526 | 58.80 | 117.68 | 7.29 | 7.64 | 3 654 | |||
暖涡 | 1.978 | 59.83 | 119.51 | 7.44 | 8.12 | 3 821 | |||
区域Ⅱ 亲潮延伸体 | F | 无涡旋 | 45.12 | 85.82 | 5.72 | 8.86 | 1 742 | ||
冷涡 | 16.106 | ||||||||
暖涡 | 4.094 | 45.74 | 86.15 | 5.81 | 6.32 | 1 763 | |||
G | 无涡旋 | 50.22 | 92.56 | 6.65 | 7.10 | 2 189 | |||
冷涡 | 10.023 | 42.24 | 85.54 | 5.42 | 5.62 | 1 948 | |||
暖涡 | 3.222 | 45.93 | 93.92 | 6.84 | 7.40 | 2 229 | |||
H | 无涡旋 | 44.96 | 93.85 | 7.01 | 7.64 | 2 328 | |||
冷涡 | 8.884 | 44.02 | 91.56 | 5.80 | 6.26 | 2 119 | |||
暖涡 | 7.227 | 47.52 | 97.13 | 7.64 | 8.43 | 2 376 | |||
I | 无涡旋 | 48.40 | 99.55 | 7.17 | 7.74 | 2 461 | |||
冷涡 | 7.563 | 45.97 | 97.16 | 6.07 | 6.31 | 2 167 | |||
暖涡 | 2.048 | 48.75 | 100.94 | 7.34 | 8.12 | 2 480 |
[1] | 董昌明. 海洋涡旋探测与分析[M]. 北京: 科学出版社, 2015. |
DONG C M. Oceanic eddy detection and analysis[M]. Beijing: Science Press, 2015. | |
[2] | LAWRENCE M W. Simple prediction of convergence zone propagation in waters around Australia[M]. Sydney: Royal Australian Navy Researche Lab Eedecliff, 1983. |
[3] | BAER R N. Calculations of sound propagation through an eddy[J]. The Journal of the Acoustical Society of America, 1980, 67(4): 1180-1185. |
[4] | 刘清宇. 海洋中尺度现象下的声传播研究[D]. 哈尔滨: 哈尔滨工程大学, 2006. |
LIU Q Y. The research of wave propagation in ocean environment with mesoscale phenomena[D]. Harbin: Harbin Engineering University, 2006. | |
[5] | 卢晓亭, 胡均川, 李玉阳. 海洋涡中的三维声传播分析[C]// 青年学术会议论文集, 武汉: 中国声学学会, 1999. |
LU X T, HU J C, LI Y Y. Analysis of three-dimensional acoustic propagation in ocean vortices[C]// Youth academic Conference, Wuhan: Acoustical Society of China, 1999. | |
[6] | 康颖. 海洋中尺度结构声传播特性分析[D]. 青岛: 中国海洋大学, 2004. |
KANG Y. Ocean mesoscale features effects on sound propa-gation[D]. Qingdao: Ocean University of China, 2004. | |
[7] | 朱凤芹, 张海刚, 屈科. 南海东北部中尺度暖涡对声传播的影响[J]. 哈尔滨工程大学学报, 2021, 42(10):1496-1502. |
ZHU F Q, ZHANG H G, QU K. Influence of mesoscale warm eddies on sound propagation in the northeastern South China Sea[J]. Journal of Harbin Engineering University, 2021, 42(10): 1496-1502. | |
[8] | 张旭, 程琛, 邱仁贵. 一个西太平洋冷涡影响下的会聚区声传播变异特征分析[J]. 海洋通报, 2015, 34(2):130-137. |
ZHANG X, CHENG C, QIU R G. Abnormal features of the convergence zone caused by the cold eddy in Western Pacific[J]. Marine Science Bulletin, 2015, 34(2): 130-137. | |
[9] | ITOH S, YASUDA I. Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the subarctic North Pacific[J]. Journal of Physical Oceanography, 2010, 40(12): 2624-2642. |
[10] | CHEN G X, HOU Y J, CHU X Q. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research, 2011, 116(C6): C06018. |
[11] | CHAIGNEAU A, LE TEXIER M, ELDIN G, et al. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11): C11025. |
[12] | YANG G, WANG F, LI Y L, et al. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1906-1925. |
[13] | 胡冬, 陈希, 宋海波, 等. 黑潮延伸体邻近海区中尺度涡三维合成结构分析[J]. 海洋开发与管理, 2021, 38(1):42-48. |
HU D, CHEN X, SONG H B, et al. Three dimensional structures of composed mesoscale eddies near the Kuroshio extension region[J]. Ocean Development and Management, 2021, 38(1): 42-48. | |
[14] | PORTER M B, BUCKER H P. Gaussian beam tracing for computing ocean acoustic fields[J]. The Journal of the Acoustical Society of America, 1987, 82(4): 1349-1359. |
[15] | ZHENG Q A, TAI C K, HU J Y, et al. Satellite altimeter observations of nonlinear Rossby eddy-Kuroshio interaction at the Luzon Strait[J]. Journal of Oceanography, 2011, 67(4): 365-376. |
[16] | LE TRAON P Y, NADAL F, DUCET N. An improved mapping method of multisatellite altimeter data[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(2): 522-534. |
[17] | 童明荣, 刘增宏, 孙朝辉, 等. ARGO剖面浮标数据质量控制过程剖析[J]. 海洋技术, 2003, 22(4):79-84. |
TONG M R, LIU Z H, SUN C H, et al. Analysis of data quality control process of the ARGO profiling buoy[J]. Ocean Technology, 2003, 22(4): 79-84. | |
[18] | LE VU B, STEGNER A, ARSOUZE T. Angular momentum eddy detection and tracking algorithm (AMEDA) and its application to coastal eddy formation[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(4): 739-762. |
[19] | MKHININI N, COIMBRA A L S, STEGNER A, et al. Long-lived mesoscale eddies in the eastern Mediterranean Sea: Analysis of 20 years of AVISO geostrophic velocities[J]. Journal of Geophysical Research: Oceans, 2014, 119(12): 8603-8626. |
[20] | PORTER M B. The Bellhop manual and user’s guide: preliminary draft[M]. California USA: Heat, Light, and Sound Research, Inc, 2011. |
[21] | TALLEY L D. Distribution and formation of North Pacific intermediate water[J]. Journal of Physical Oceanography, 1993, 23(3): 517-537. |
[22] | MEDWIN H. Speed of sound in water: A simple equation for realistic parameters[J]. The Journal of the Acoustical Society of America, 1975, 58(6): 1318-1319. |
[23] | 冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999. |
FENG S Z, LI F Q, LI S J. Introduction to marine science[M]. Beijing: Higher Education Press, 1999. |
[1] | LI Zhichao, GUO Junru, SONG Jun, BAI Zhipeng, FU Yanzhao, CAI Yu, WANG Xifeng. Distribution, movement and generation mechanism of the mesoscale eddy around the Kuroshio in the East China Sea [J]. Journal of Marine Sciences, 2022, 40(4): 1-10. |
[2] | ZHANG Jiaying, ZHOU Feng, TIAN Di, HUANG Ting, . The characteristics and formation mechanism of the oceanic mesoscale eddy origin in northwest of Sumatra [J]. Journal of Marine Sciences, 2021, 39(3): 1-11. |
[3] | HUANG Ting, ZHOU Feng, TIAN Di, ZHANG Jiaying. Seasonal variations of mesoscale eddy in the Bay of Bengal and its adjacent regions [J]. Journal of Marine Sciences, 2020, 38(3): 21-30. |
[4] | ZHANG Tao, LI Junyi, XIE Lingling, ZHENG Shaojun, ZHENG Huiyuan. Statistical characteristics and path analysis of mesoscale eddy in the East China Sea [J]. Journal of Marine Sciences, 2020, 38(1): 77-86. |
[5] | MA Zhi-kang, FU Dong-yang, QU Ke, ZHU Feng-qin. Effects of typhoon Tembin on underwater acoustic wave propagation in two kinds of deep sound channel [J]. Journal of Marine Sciences, 2019, 37(3): 40-48. |
[6] | ZHAO Wen-tao, YU Jian-cheng, ZHANG Ai-qun, LI Yan. Dynamic feature detection of mesoscale eddies based on SLA data [J]. Journal of Marine Sciences, 2016, 34(3): 62-68. |
[7] | WANG Hui-nan, XU Dong-feng, CHEN Zhong-wei, XU Ming-quan, YANG Long-qi, CHEN Hong. Exploration on the transportation capacity using an anticyclonic eddy of the South China Sea in January 2010 [J]. Journal of Marine Sciences, 2014, 32(4): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||