Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (1): 69-82.DOI: 10.3969/j.issn.1001-909X.2024.01.007
Previous Articles Next Articles
LIN Lianjie1(), DONG Changming1,*(), JI Yuxiang2, LIM KAM SIAN Kenny Thiam Choy3, LI Zhaoxin4, JIANG Xingliang5, CAO Yuhan6, GAO Hui1, WANG Shengqiang1, CAO Qian1
Received:
2023-03-15
Revised:
2023-09-08
Online:
2024-03-15
Published:
2024-05-11
CLC Number:
LIN Lianjie, DONG Changming, JI Yuxiang, LIM KAM SIAN Kenny Thiam Choy, LI Zhaoxin, JIANG Xingliang, CAO Yuhan, GAO Hui, WANG Shengqiang, CAO Qian. Prediction of UIva prolifera drift and transportation based on remote sensing data and numerical models: A case study in the offshore area of Jiangsu Province[J]. Journal of Marine Sciences, 2024, 42(1): 69-82.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.01.007
Fig.2 Diagram of WRF model range setting (The black box area is the calculation range of WRF model, and the red box area is the UIva prolifera forecast range.)
Fig.6 Comparison between ASCAT observation (a) and WRF model simulation (b) in monthly average sea surface wind speed data at 10 meters in the study area in September 2019
Fig.7 Spatial distribution of relative errors in monthly average sea surface wind speed data at 10 meters observed by ASCAT and simulated by WRF model in the study area in September 2019
Fig.9 Spatial distribution of relative errors in monthly average significant wave height simulated by ERA5 and SWAN modes in the study area in September 2019
Fig.10 Comparison of sea surface temperature between satellite observation provided by RSS (a) and simulated by ROMS model (b) in the study area in June 2019
Fig.12 Comparison of the coverage area of UIva prolifera predicted by the model and satellite observations on May 27th and 28th, 2017 (The dashed box represents the appearance block of UIva prolifera.)
区域 | 浒苔覆盖面积 | 浒苔中心点位置 | |||||
---|---|---|---|---|---|---|---|
卫星观测/km2 | 模式预报/km2 | 误差/% | 卫星观测 | 模式预报 | 误差/km | ||
连云港近岸 | 38.89 | 31.56 | 23.20 | 34.88 °N,119.25 °E | 34.89 °N,119.24 °E | 0.01 | |
黄海北部离岸 | 975.17 | 1 170.60 | 16.70 | 35.01 °N,121.41 °E | 34.87 °N,121.23 °E | 0.28 | |
长江口 | 133.82 | 166.23 | 19.50 | 31.48 °N,121.93 °E | 31.64 °N,121.86 °E | 0.28 | |
江苏近海 | 1 147.88 | 1 368.39 | 16.11 |
Tab.1 48-hour model prediction and satellite observation of the coverage area and center point position of UIva prolifera (average values of May 27th and 28th, 2017)
区域 | 浒苔覆盖面积 | 浒苔中心点位置 | |||||
---|---|---|---|---|---|---|---|
卫星观测/km2 | 模式预报/km2 | 误差/% | 卫星观测 | 模式预报 | 误差/km | ||
连云港近岸 | 38.89 | 31.56 | 23.20 | 34.88 °N,119.25 °E | 34.89 °N,119.24 °E | 0.01 | |
黄海北部离岸 | 975.17 | 1 170.60 | 16.70 | 35.01 °N,121.41 °E | 34.87 °N,121.23 °E | 0.28 | |
长江口 | 133.82 | 166.23 | 19.50 | 31.48 °N,121.93 °E | 31.64 °N,121.86 °E | 0.28 | |
江苏近海 | 1 147.88 | 1 368.39 | 16.11 |
区域 | 5月27日浒苔漂移方向/(°) | 5月28日浒苔漂移方向/(°) | |||||
---|---|---|---|---|---|---|---|
卫星观测 | 模式预报 | 误差 | 卫星观测 | 模式预报 | 误差 | ||
连云港近岸 | 275.49 | 214.42 | 61.07 | 88.85 | 52.59 | 36.26 | |
黄海北部离岸 | 39.88 | 48.84 | -8.96 | 33.60 | 137.89 | -104.29 | |
长江口 | 294.16 | 334.53 | -40.37 | 95.58 | 86.68 | 8.90 |
Tab.2 48-hour model prediction and satellite observation of the drift direction of UIva prolifera (May 27th and 28th, 2017)
区域 | 5月27日浒苔漂移方向/(°) | 5月28日浒苔漂移方向/(°) | |||||
---|---|---|---|---|---|---|---|
卫星观测 | 模式预报 | 误差 | 卫星观测 | 模式预报 | 误差 | ||
连云港近岸 | 275.49 | 214.42 | 61.07 | 88.85 | 52.59 | 36.26 | |
黄海北部离岸 | 39.88 | 48.84 | -8.96 | 33.60 | 137.89 | -104.29 | |
长江口 | 294.16 | 334.53 | -40.37 | 95.58 | 86.68 | 8.90 |
区域 | 浒苔覆盖面积 | 浒苔中心点位置 | |||||
---|---|---|---|---|---|---|---|
卫星观测/km2 | 模式预报/km2 | 误差/% | 卫星观测 | 模式预报 | 误差/km | ||
黄海北部 | 1 270.30 | 1 212.00 | 4.81 | 35.61°N,120.85°E | 34.88°N,121.17°E | 1.20 | |
黄海南部 | 440.61 | 155.71 | 182.97 | 32.89°N,122.84°E | 31.62°N,121.85°E | 2.04 | |
江苏近海 | 1 710.91 | 1 367.71 | 25.09 |
Tab.3 48-hour model prediction and satellite observation of the coverage area and center point position of UIva prolifera (average values of June 16th and 17th, 2017)
区域 | 浒苔覆盖面积 | 浒苔中心点位置 | |||||
---|---|---|---|---|---|---|---|
卫星观测/km2 | 模式预报/km2 | 误差/% | 卫星观测 | 模式预报 | 误差/km | ||
黄海北部 | 1 270.30 | 1 212.00 | 4.81 | 35.61°N,120.85°E | 34.88°N,121.17°E | 1.20 | |
黄海南部 | 440.61 | 155.71 | 182.97 | 32.89°N,122.84°E | 31.62°N,121.85°E | 2.04 | |
江苏近海 | 1 710.91 | 1 367.71 | 25.09 |
区域 | 6月16日浒苔漂移方向/(°) | 6月17日浒苔漂移方向/(°) | |||||
---|---|---|---|---|---|---|---|
卫星观测 | 模式预报 | 误差 | 卫星观测 | 模式预报 | 误差 | ||
黄海北部 | 58.61 | 66.13 | -7.52 | 47.53 | 126.43 | -78.90 | |
黄海南部 | 229.13 | 224.27 | 4.86 | 48.73 | 268.99 | -220.26 |
Tab.4 48-hour model prediction and satellite observation of the drift direction of UIva prolifera (June 16th and 17th, 2017)
区域 | 6月16日浒苔漂移方向/(°) | 6月17日浒苔漂移方向/(°) | |||||
---|---|---|---|---|---|---|---|
卫星观测 | 模式预报 | 误差 | 卫星观测 | 模式预报 | 误差 | ||
黄海北部 | 58.61 | 66.13 | -7.52 | 47.53 | 126.43 | -78.90 | |
黄海南部 | 229.13 | 224.27 | 4.86 | 48.73 | 268.99 | -220.26 |
Fig.15 Comparison between the distribution of UIva prolifera predicted by the 24-hour forecast considering and without considering the Stokes Drift model and the satellite observation results (May 27th, 2017)
区域 | 浒苔覆盖面积/km2 | 模式预报浒苔覆盖面积与卫星观测结果的误差/% | ||||
---|---|---|---|---|---|---|
卫星观测 | 考虑Stokes漂流模式 | 不考虑Stokes漂流模式 | 考虑Stokes漂流模式 | 不考虑Stokes漂流模式 | ||
连云港近岸 | 34.34 | 32.26 | 26.65 | 0.06 | 28.84 | |
黄海北部离岸 | 1 029.70 | 1 200.77 | 1 474.32 | 14.25 | 30.16 | |
长江口 | 143.42 | 175.35 | 200.60 | 18.21 | 28.50 | |
江苏近海 | 1 207.46 | 1 408.38 | 1 701.57 | 14.27 | 29.04 |
Tab.5 Comparison of 24-hour UIva prolifera coverage area predicted by considering and without considering the Stokes Drift model with satellite observation results (May 27th, 2017)
区域 | 浒苔覆盖面积/km2 | 模式预报浒苔覆盖面积与卫星观测结果的误差/% | ||||
---|---|---|---|---|---|---|
卫星观测 | 考虑Stokes漂流模式 | 不考虑Stokes漂流模式 | 考虑Stokes漂流模式 | 不考虑Stokes漂流模式 | ||
连云港近岸 | 34.34 | 32.26 | 26.65 | 0.06 | 28.84 | |
黄海北部离岸 | 1 029.70 | 1 200.77 | 1 474.32 | 14.25 | 30.16 | |
长江口 | 143.42 | 175.35 | 200.60 | 18.21 | 28.50 | |
江苏近海 | 1 207.46 | 1 408.38 | 1 701.57 | 14.27 | 29.04 |
区域 | 浒苔中心点位置 | 模式预报浒苔中心点位置与卫星观测结果的误差/km | ||||
---|---|---|---|---|---|---|
卫星观测 | 考虑Stokes漂流模式 | 不考虑Stokes漂流模式 | 考虑Stokes漂流模式 | 不考虑Stokes漂流模式 | ||
连云港近岸 | 34.87°N,119.25°E | 34.87°N,119.24°E | 34.88°N,119.23°E | 0.01 | 0.02 | |
黄海北部离岸 | 34.96°N,121.34°E | 34.86°N,121.23°E | 34.86°N,121.24°E | 0.19 | 0.19 | |
长江口 | 31.45°N,121.93°E | 31.64°N,121.76°E | 31.63°N,121.86°E | 0.38 | 0.32 |
Tab.6 Comparison of the 24-hour center position of UIva prolifera predicted by considering and without considering the Stokes Drift model with satellite observation results (May 27th, 2017)
区域 | 浒苔中心点位置 | 模式预报浒苔中心点位置与卫星观测结果的误差/km | ||||
---|---|---|---|---|---|---|
卫星观测 | 考虑Stokes漂流模式 | 不考虑Stokes漂流模式 | 考虑Stokes漂流模式 | 不考虑Stokes漂流模式 | ||
连云港近岸 | 34.87°N,119.25°E | 34.87°N,119.24°E | 34.88°N,119.23°E | 0.01 | 0.02 | |
黄海北部离岸 | 34.96°N,121.34°E | 34.86°N,121.23°E | 34.86°N,121.24°E | 0.19 | 0.19 | |
长江口 | 31.45°N,121.93°E | 31.64°N,121.76°E | 31.63°N,121.86°E | 0.38 | 0.32 |
区域 | 浒苔漂移方向/(°) | 模式预报浒苔漂移方向与卫星观测结果的误差/(°) | ||||
---|---|---|---|---|---|---|
卫星观测 | 考虑Stokes漂流模式 | 不考虑Stokes漂流模式 | 考虑Stokes漂流模式 | 不考虑Stokes漂流模式 | ||
连云港近岸 | 275.49 | 279.85 | 214.42 | -4.36 | 61.07 | |
黄海北部离岸 | 39.88 | 40.44 | 48.84 | -0.57 | -8.96 | |
长江口 | 294.16 | 156.28 | 334.53 | 137.88 | -40.37 |
Tab.7 Comparison of 24-hour drift directions of UIva prolifera predicted by considering and without considering the Stokes Drift model with satellite observation results (May 27th, 2017)
区域 | 浒苔漂移方向/(°) | 模式预报浒苔漂移方向与卫星观测结果的误差/(°) | ||||
---|---|---|---|---|---|---|
卫星观测 | 考虑Stokes漂流模式 | 不考虑Stokes漂流模式 | 考虑Stokes漂流模式 | 不考虑Stokes漂流模式 | ||
连云港近岸 | 275.49 | 279.85 | 214.42 | -4.36 | 61.07 | |
黄海北部离岸 | 39.88 | 40.44 | 48.84 | -0.57 | -8.96 | |
长江口 | 294.16 | 156.28 | 334.53 | 137.88 | -40.37 |
[1] | LIU D Y, KEESING J K, HE P M, et al. The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications[J]. Estuarine, Coastal and Shelf Science, 2013, 129: 2-10. |
[2] | 何进, 石雅君, 王玉珏, 等. 不同温度与营养盐条件对浒苔(Ulva prolifera)和肠浒苔(Ulva intestinalis)的生长影响[J]. 海洋通报, 2013, 32(5):573-579. |
HE J, SHI Y J, WANG Y J, et al. Impact of temperature and nutrients on the growth of Ulva prolifera and Ulva intestinalis[J]. Marine Science Bulletin, 2013, 32(5): 573-579. | |
[3] | WANG M Q, HU C M. Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations[J]. Remote Sensing of Environment, 2016, 183: 350-367. |
[4] | SUN D Y, CHEN Y, WANG S Q, et al. Using Landsat 8 OLI data to differentiate Sargassum and Ulva prolifera blooms in the South Yellow Sea[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 98: 102302. |
[5] | 王明清, 姜鹏, 王金锋, 等. 2007年夏季青岛石莼科(Ulvaceae)绿藻无机元素含量分析[J]. 生物学杂志, 2008, 25(4):37-38,9. |
WANG M Q, JIANG P, WANG J F, et al. Inorganic elements analysis for Ulvaceae species from Qingdao coasts in 2007[J]. Journal of Biology, 2008, 25(4): 37-38, 9. | |
[6] |
LIU X Q, WANG Z L, ZHANG X L. A review of the green tides in the Yellow Sea, China[J]. Marine Environmental Research, 2016, 119: 189-196.
DOI PMID |
[7] | JIN Q, DONG S L. Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense[J]. Journal of Experi-mental Marine Biology and Ecology, 2003, 293(1): 41-55. |
[8] | NELSON T A, LEE D J, SMITH B C. Are “green tides” harmful algal blooms? Toxic properties of water-soluble extracts from two bloom-forming macroalgae, Ulva fenestrate and Ulvaria obscura (Ulvophyceae)[J]. Journal of Phycology, 2003, 39: 874-879. |
[9] | VAN ALSTYNE K L, KOELLERMEIER L, NELSON T A. Spatial variation in dimethylsulfoniopropionate (DMSP) production in Ulva lactuca (Chlorophyta) from the Northeast Pacific[J]. Marine Biology, 2007, 150(6): 1127-1135. |
[10] | WANG Z L, XIAO J, FAN S L, et al. Who made the world's largest green tide in China? —An integrated study on the initiation and early development of the green tide in Yellow Sea[J]. Limnology and Oceanography, 2015, 60(4): 1105-1117. |
[11] | ZHOU M J, LIU D Y, ANDERSON D M, et al. Introduction to the Special Issue on green tides in the Yellow Sea[J]. Estuarine, Coastal and Shelf Science, 2015, 163: 3-8. |
[12] | 吉会峰, 刘吉堂, 莫旭冬, 等. 江苏重点海域绿潮漂移扩散数值模拟[J]. 海洋科学, 2018, 42(5):82-91. |
JI H F, LIU J T, MO X D, et al. Numerical simulation of the green tide drift and diffusion in the sea areas of Jiangsu Province[J]. Marine Sciences, 2018, 42(5): 82-91. | |
[13] | 黄娟, 吴玲娟, 高松, 等. 黄海绿潮应急漂移数值模拟[J]. 海洋预报, 2011, 28(1):25-32. |
HUANG J, WU L J, GAO S, et al. Numerical simulation of emergency drift of green tide in the Yellow Sea[J]. Marine Forecasts, 2011, 28(1): 25-32. | |
[14] | 李燕, 李云, 刘钦政. 浒苔漂移轨迹预报系统[J]. 海洋预报, 2010, 27(4):74-78. |
LI Y, LI Y, LIU Q Z. Prediction system of drift trajectory of Enteromorpha prolifera[J]. Marine Forecasts, 2010, 27(4): 74-78. | |
[15] | 赵昌, 尹丽萍, 王关锁, 等. 黄海浒苔漂移输运模式的建立与应用[J]. 海洋与湖沼, 2018, 49(5):1075-1083. |
ZHAO C, YIN L P, WANG G S, et al. The modelling of Ulva prolifera transport in the Yellow Sea and its application[J]. Oceanologia et Limnologia Sinica, 2018, 49(5): 1075-1083. | |
[16] | 何恩业, 季轩梁, 黄洪辉, 等. 近10a黄海浒苔绿潮时空分布特征分析[J]. 海洋预报, 2021, 38(6):1-11. |
HE E Y, JI X L, HUANG H H, et al. The spatial and temporal distribution of Ulva prolifera in the Yellow Sea in recent 10 years[J]. Marine Forecasts, 2021, 38(6): 1-11. | |
[17] | LONGUET-HIGGINS M. Mass transport in water waves[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1953, 245: 535-581. |
[18] | KENYON K E. Stokes transport[J]. Journal of Geophysical Research, 1970, 75(6): 1133-1135. |
[19] | FENG M, CAPUTI N, PENN J, et al. Ocean circulation, Stokes drift, and connectivity of western rock lobster (Panulirus cygnus) population[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68(7): 1182-1196. |
[20] | ONINK V, WICHMANN D, DELANDMETER P, et al. The role of Ekman Currents, geostrophy, and Stokes drift in the accumulation of floating microplastic[J]. Journal of Geophysical Research Oceans, 2019, 124(3): 1474-1490. |
[21] | RÖHRS J, CHRISTENSEN K H, VIKEBØ F, et al. Wave-induced transport and vertical mixing of pelagic eggs and larvae[J]. Limnology and Oceanography, 2014, 59(4): 1213-1227. |
[22] | MONISMITH S G, FONG D A. A note on the potential transport of scalars and organisms by surface waves[J]. Limnology and Oceanography, 2004, 49(4): 1214-1217. |
[23] | STOKES G G. On the theory of oscillatory waves[J]. Transactions of the Cambridge Philosophical Society, 1984, 8: 441-455. |
[24] | HASSELMANN K. Wave-driven inertial oscillations[J]. Geophysical Fluid Dynamics, 1970, 1(3/4): 463-502. |
[25] | 刘金林, 杨晓倩, 李继业, 等. 黄海绿潮暴发期间浒苔沉降研究进展[J]. 环境污染与防治, 2020, 42(5):614-618. |
LIU J L, YANG X Q, LI J Y, et al. Research progress on settled mature Ulva prolifera during the outbreak of green tide in the Yellow Sea[J]. Environmental Pollution & Control, 2020, 42(5): 614-618. | |
[26] | 吴青. 浒苔漂浮与沉降机制研究[D]. 上海: 上海海洋大学, 2015. |
WU Q. Mechanism of floating and sinking for Ulva prolifera[D]. Shanghai: Shanghai Ocean University, 2015. |
[1] | ZHAN Junda, LI Yihong, WU Sensen, CAO Shengwen, WANG Yuanyuan, ZHANG Feng, DU Zhenhong. 3D dynamic visualization method for diffusion process of marine hazardous chemicals [J]. Journal of Marine Sciences, 2022, 40(4): 65-72. |
[2] | FANG Jie, MU Qinglin, ZHANG Qinghong, WANG Xiaohua. Distribution and risk assessment of organotin compounds in marine shellfishes from coastal areas of Zhejiang Province, China [J]. Journal of Marine Sciences, 2020, 38(4): 65-71. |
[3] | YANG Wen-chao, HUANG Dao-jian, CHEN Ji-xin, CHEN Xiao-yan, LIU Wang, WANG Yu-shan. Research on ecological environment quality in the sea area near the second petrochemical sewage pipeline discharge outlet in Daya Bay [J]. Journal of Marine Sciences, 2019, 37(4): 85-93. |
[4] | YU Xiao-cai, WANG Li-ping, LIU Jing-hua, GUO Mei-cen, ZHU Wan-ting, LIAO Jia-qi, WU Yun-ying. Degradation of marine diesel oil by Li+/CNTS-TiO2 photocatalyst under visible light [J]. Journal of Marine Sciences, 2019, 37(1): 52-58. |
[5] | PAN Yong-qiang, XUE Bin, ZHANG Shen-wei, HUANG Zi-yin. Residual and potential ecological risks of PCBs in the mollusk from Zhoushan Fishery [J]. Journal of Marine Sciences, 2018, 36(2): 92-98. |
[6] | YU Xiao-guo, YANG Hai-li, LIU Xing, LEI Ji-jiang, LIN Zhong-sheng, YAO Zi-wei, ZHANG Wei-yan, YAO Xu-ying, JIN Xiao-bing. Split oil identified and vertical migration in sediment of seabed: Case in Dalian Bay [J]. Journal of Marine Sciences, 2018, 36(1): 58-65. |
[7] | DENG Hua, GUAN Wei-bing, CAO Zhen-yi, BAO Min, CHEN Qi. Analysis of hydrological and meteorological factors causing Karenia mikimotoi bloom in 2012 along Fujian coast [J]. Journal of Marine Sciences, 2016, 34(4): 28-38. |
[8] | CHEN De-hui, XU Heng-tao, QIAN Jian, ZHOU Qing-song, SONG Wei-hua. Monte Carlo simulation on potential ecological risk evaluation of heavy metals in surface sediments from adjacent waters of Dushan Port,Jiaxing [J]. Journal of Marine Sciences, 2016, 34(2): 65-74. |
[9] | YANG Miao-feng, ZHENG Sheng-hua, XI Ying-yu, ZHONG Shuo-liang. The horizontal distribution and affecting factors of dissolved heavy metals in seawater of Dongshan Bay, Fujian Province [J]. Journal of Marine Sciences, 2016, 34(2): 75-82. |
[10] | JIANG Shuang-cheng, LIN Pei-mei, CAI Yu-ting, ZHENG Sheng-hua, CAI Jian-di, XU Cui-ya, YANG Miao-feng, XI Ying-yu, ZHONG Shuo-liang. Analysis of eutrophication characteristics in Dongshan Bay based on PCA [J]. Journal of Marine Sciences, 2015, 33(1): 81-88. |
[11] | GAO Liang-ming, LI Yan, ZHONG Shuo-liang, LUO Dong-lian. Remote sensing detected mariculture changes in Dongshan Bay [J]. Journal of Marine Sciences, 2014, 32(4): 35-42. |
[12] | ZHOU Shan-shan, TANG Qiao-zhi. Residues and sources of chlorinated flame retardant Dechlorane Plus in sediment from Hangzhou Bay, China [J]. Journal of Marine Sciences, 2014, 32(2): 53-58. |
[13] | ZHANG Xue-chao, LIU Ying, SONG Ji-de, SONG Xi-hong, HU Hong-zhi, LI Xiao-min, LI Qiang. Distributions and ecological risk assessment of heavy metals in Shuangdao Bay of Weihai [J]. Journal of Marine Sciences, 2014, 32(2): 85-90. |
[14] | ZOU Ya-rong, LIANG Chao, ZENG Tao. Oil spill identification using SVM based on polarization parameters [J]. Journal of Marine Sciences, 2013, 31(3): 71-75. |
[15] | TANG Bo, XU Dong, JIN Lu, LI Tuan-jie, QIAO Ji-guo, XIE Yong-qing, ZHAI Wan-lin, LONG Jiang-ping. Enrichment characteristics and pollution assessment of dispersed elements in the surface sediment around Hainan Island waters [J]. Journal of Marine Sciences, 2013, 31(3): 89-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||