
Oxygen isotope constraint on the temperature condition of serpentinization in abyssal peridotites
XU Xucheng, YU Xing, HU Hang, HE Hu, YU Ya’na
Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2) : 104-112.
Oxygen isotope constraint on the temperature condition of serpentinization in abyssal peridotites
Abyssal peridotite is widely distributed in tectonic environments such as mid-ocean ridges, subduction zones, and continental margins, and typically undergoes subsequent alterations, among which serpentinization is the most significant type. Serpentinization refers to the chemical process wherein ferromagnesium-rich minerals in peridotite, such as olivine and pyroxene, are replaced by a series of secondary minerals like serpentine, magnetite, and brucite. The conditions of serpentinization are closely linked with hydrothermal circulation and the migration of mineral-forming substances, bearing significant implications for indicating hydrothermal mineralization. Traditional methods of petrology and geochemistry exhibit polysemic interpretations and uncertainties when reflecting serpentinization conditions, with different minerals or chemical indicators possibly suggesting different outcomes. Oxygen isotopes are ubiquitous in nature and the oxygen isotope tracing method, due to its wide applicability, ease of comparison, and support for in-situ micro-zone analysis, can clearly reflect the reaction conditions and processes of the mineral or rock-fluid system. This study primarily provides an overview of the principles of oxygen isotope thermometry, the process of abyssal peridotite serpentinization, application cases of oxygen isotope thermometry in the serpentinization of abyssal peridotite, factors influencing the oxygen isotope compositions of serpentinites, as well as the advantages and limitations of oxygen isotope thermometry. It aims to offer a reference for a more profound understanding of the serpentinization process of abyssal peridotite.
abyssal peridotites / serpentinization / water-rock interaction / oxygen isotope / temperature
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
DE VLEESCHOUWER D,
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
余星, 初凤友, 陈汉林, 等. 深海橄榄岩蛇纹石化作用的研究进展[J]. 海洋学研究, 2011, 29(1):96-103.
|
[15] |
章钰桢, 姜兆霞, 李三忠, 等. 大洋橄榄岩的蛇纹石化过程:从海底水化到俯冲脱水[J]. 岩石学报, 2022, 38(4):1063-1080.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
刘耘. 非传统稳定同位素分馏理论及计算[J]. 地学前缘, 2015, 22(5):1-28.
|
[33] |
韩吟文, 马振东. 地球化学[M]. 北京: 地质出版社, 2003.
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
姜兆霞, 刘青松. 赤铁矿的定量化及其气候意义[J]. 第四纪研究, 2016, 36(3):676-689.
|
[51] |
李彬, 袁道先, 林玉石, 等. 桂林地区降水、洞穴滴水及现代洞穴碳酸盐氧碳同位素研究及其环境意义[J]. 中国科学:D辑, 2000, 30(1):81-87.
|
[52] |
程海, 艾思本, 王先锋, 等. 中国南方石笋氧同位素记录的重要意义[J]. 第四纪研究, 2005, 25(2):157-163.
|
[53] |
毛景文, 赫英, 丁悌平. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J]. 矿床地质, 2002, 21(2):121-128.
|
[54] |
郑永飞, 傅斌, 肖益林, 等. 大别山榴辉岩氢氧同位素组成及其地球动力学意义[J]. 中国科学:D辑, 1997, 27(2):121-126.
|
[55] |
郑永飞, 陈福坤, 龚冰, 等. 大别-苏鲁造山带超高压变质岩原岩性质:锆石氧同位素和U-Pb年龄证据[J]. 科学通报, 2003, 48(2):110-119.
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3):399-424.
|
[71] |
高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 27(2):417-432.
|
[72] |
池国祥, 卢焕章. 流体包裹体组合对测温数据有效性的制约及数据表达方法[J]. 岩石学报, 2008, 24(9):1945-1953.
|
[73] |
|
[74] |
|
/
〈 |
|
〉 |