Oxygen isotope constraint on the temperature condition of serpentinization in abyssal peridotites

XU Xucheng, YU Xing, HU Hang, HE Hu, YU Ya’na

Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2) : 104-112.

PDF(1238 KB)
PDF(1238 KB)
Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2) : 104-112. DOI: 10.3969/j.issn.1001-909X.2024.02.010

Oxygen isotope constraint on the temperature condition of serpentinization in abyssal peridotites

Author information +
History +

Abstract

Abyssal peridotite is widely distributed in tectonic environments such as mid-ocean ridges, subduction zones, and continental margins, and typically undergoes subsequent alterations, among which serpentinization is the most significant type. Serpentinization refers to the chemical process wherein ferromagnesium-rich minerals in peridotite, such as olivine and pyroxene, are replaced by a series of secondary minerals like serpentine, magnetite, and brucite. The conditions of serpentinization are closely linked with hydrothermal circulation and the migration of mineral-forming substances, bearing significant implications for indicating hydrothermal mineralization. Traditional methods of petrology and geochemistry exhibit polysemic interpretations and uncertainties when reflecting serpentinization conditions, with different minerals or chemical indicators possibly suggesting different outcomes. Oxygen isotopes are ubiquitous in nature and the oxygen isotope tracing method, due to its wide applicability, ease of comparison, and support for in-situ micro-zone analysis, can clearly reflect the reaction conditions and processes of the mineral or rock-fluid system. This study primarily provides an overview of the principles of oxygen isotope thermometry, the process of abyssal peridotite serpentinization, application cases of oxygen isotope thermometry in the serpentinization of abyssal peridotite, factors influencing the oxygen isotope compositions of serpentinites, as well as the advantages and limitations of oxygen isotope thermometry. It aims to offer a reference for a more profound understanding of the serpentinization process of abyssal peridotite.

Key words

abyssal peridotites / serpentinization / water-rock interaction / oxygen isotope / temperature

Cite this article

Download Citations
XU Xucheng , YU Xing , HU Hang , et al . Oxygen isotope constraint on the temperature condition of serpentinization in abyssal peridotites[J]. Journal of Marine Sciences. 2024, 42(2): 104-112 https://doi.org/10.3969/j.issn.1001-909X.2024.02.010

References

[1]
ALT J C, SHANKS III W C. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling[J]. Geochimica et Cosmochimica Acta, 2003, 67(4): 641-653.
[2]
MÉVEL C. Serpentinization of abyssal peridotites at mid-ocean ridges[J]. Comptes Rendus Géoscience, 2003, 335(10/11): 825-852.
[3]
KELEMEN P B, MATTER J. In situ carbonation of peridotite for CO2 storage[J]. Proceedings of the National Academy of Sciences, 2008, 105(45): 17295-17300.
[4]
BACH W, KLEIN F. The petrology of seafloor rodingites: Insights from geochemical reaction path modeling[J]. Lithos, 2009, 112(1/2): 103-117.
[5]
SCICCHITANO M R, LAFAY R, VALLEY J W, et al. Protracted hydrothermal alteration recorded at the microscale in the Chenaillet ophicarbonates(Western Alps):Insights from in situ δ18O thermometry in serpentine,carbonate and magnetite[J]. Geochimica et Cosmochimica Acta, 2022, 318: 144-164.
[6]
BARNES J D, PAULICK H, SHARP Z D, et al. Stable isotope (δ18O, δD, δ37Cl) evidence for multiple fluid histories in mid-Atlantic abyssal peridotites (ODP Leg 209)[J]. Lithos, 2009, 110(1/2/3/4): 83-94.
[7]
LITTLER K, RÖHL U, WESTERHOLD T, et al. A high-resolution benthic stable-isotope record for the South Atlantic: Implications for orbital-scale changes in Late Paleocene-Early Eocene climate and carbon cycling[J]. Earth and Planetary Science Letters, 2014, 401: 18-30.
[8]
DE VLEESCHOUWER D, VAHLENKAMP M, CRUCIFIX M, et al. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y.[J]. Geology, 2017, 45(4): 375-378.
[9]
NOËL J, GODARD M, OLIOT E, et al. Evidence of polygenetic carbon trapping in the Oman Ophiolite: Petro-structural, geochemical, and carbon and oxygen isotope study of the Wadi Dima harzburgite-hosted carbonates (Wadi Tayin massif, Sultanate of Oman)[J]. Lithos, 2018, 323: 218-237.
[10]
TAYLOR H P Jr. Water/rock interactions and the origin of H2O in granitic batholiths[J]. Journal of the Geological Society, 1977, 133(6): 509-558.
[11]
AGRINIER P, CANNAT M. Oxygen-isotope constraints on serpentinization processes in ultramafic rocks from the Mid-Atlantic Ridge (23°N)[M] //KARSONJ A, CANNATM, MILLERD J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 153, 1997: 381-388.
[12]
SACCOCIA P J, SEEWALD J S, SHANKS III W C. Oxygen and hydrogen isotope fractionation in serpentine-water and talc-water systems from 250 to 450 ℃, 50MPa[J]. Geochimica et Cosmochimica Acta, 2009, 73(22): 6789-6804.
[13]
DICK H J B. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism[M] //SAUNDERSA D, NORRYM J. Magmatism in the ocean basins. London: Geological Society Special Publications, 1989: 71-105.
[14]
余星, 初凤友, 陈汉林, 等. 深海橄榄岩蛇纹石化作用的研究进展[J]. 海洋学研究, 2011, 29(1):96-103.
YU X, CHU F Y, CHEN H L, et al. Advances in research of abyssal peridotite serpentinization[J]. Journal of Marine Sciences, 2011, 29(1): 96-103.
[15]
章钰桢, 姜兆霞, 李三忠, 等. 大洋橄榄岩的蛇纹石化过程:从海底水化到俯冲脱水[J]. 岩石学报, 2022, 38(4):1063-1080.
ZHANG Y Z, JIANG Z X, LI S Z, et al. The process of oceanic peridotite serpentinization: From seafloor hydration to subduction dehydration[J]. Acta Petrologica Sinica, 2022, 38(4): 1063-1080.
[16]
BACH W, PAULICK H, GARRIDO C J, et al. Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274)[J]. Geophysical Research Letters, 2006, 33(13): L13306.
[17]
MALVOISIN B, BRUNET F, CARLUT J, et al. Serpenti-nization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4):B04102.
[18]
CANNAT M, MANGENEY A, ONDRÉAS H, et al. High-resolution bathymetry reveals contrasting landslide activity shaping the walls of the Mid-Atlantic Ridge axial valley[J]. Geochemistry Geophysics Geosystems, 2013, 14(4): 996-1011.
[19]
HARVEY J, SAVOV I P, AGOSTINI S, et al. Si-metasomatism in serpentinized peridotite: The effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209[J]. Geochimica et Cosmochimica Acta, 2014, 126: 30-48.
[20]
FACER J, DOWNES H, BEARD A. In situ serpentinization and hydrous fluid metasomatism in spinel dunite xenoliths from the Bearpaw Mountains, Montana, USA[J]. Journal of Petrology, 2009, 50(8): 1443-1475.
[21]
GUILLOT S, HATTORI K. Serpentinites: Essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life[J]. Elements, 2013, 9(2): 95-98.
[22]
CORTIADE N, DELACOUR A, GUILLAUME D, et al. Serpentinization of mantle xenoliths in Kerguelen archipelago: A first petrographic and geochemical study[J]. Lithos, 2022, 428/429: 106796.
[23]
DESCHAMPS F, GODARD M, GUILLOT S, et al. Geoche-mistry of subduction zone serpentinites: A review[J]. Lithos, 2013, 178: 96-127.
[24]
EVANS B W, HATTORI K, BARONNET A. Serpentinite: What, why, where?[J]. Elements, 2013, 9(2): 99-106.
[25]
BOSCHI C, DINI A, BANESCHI I, et al. Brucite-driven CO2 uptake in serpentinized dunites (Ligurian Ophiolites, Montecastelli, Tuscany)[J]. Lithos, 2017, 288/289: 264-281.
[26]
KELEMEN P B, MATTER J, STREIT E E, et al. Rates and mechanisms of mineral carbonation in peridotite: Natural processes and recipes for enhanced, in situ CO2 capture and storage[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 545-576.
[27]
STRAUB S M, LAYNE G D. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones[J]. Geochimica et Cosmochimica Acta, 2003, 67(21): 4179-4203.
[28]
HATTORI K H, GUILLOT S. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge[J]. Geology, 2003, 31(6): 525-528.
[29]
RUDNICK R L, GAO S. Composition of the continental crust[M] //HOLLANDH D, TUREKIANK K. Treatise on Geochemistry. Amsterdam: Elsevier, 2003: 1-64.
[30]
LI C S, RIPLEY E M. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits[J]. Mineralium Deposita, 2005, 40(2): 218-230.
[31]
TULI J K. Nuclear wallet cards[M]. [S.l.]: Brookhaven National Laboratory, 1995.
[32]
刘耘. 非传统稳定同位素分馏理论及计算[J]. 地学前缘, 2015, 22(5):1-28.
LIU Y. Theory and computational methods of non-traditional stable isotope fractionation[J]. Earth Science Frontiers, 2015, 22(5): 1-28.
[33]
韩吟文, 马振东. 地球化学[M]. 北京: 地质出版社, 2003.
HAN Y W, MA Z D. Geochemistry[M]. Beijing: Geological Publishing House, 2003.
[34]
HOEFS J. Stable isotope geochemistry[M]. Berlin: Springer, 1997.
[35]
CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
[36]
HAYES J M. Practice and principles of isotopic measurements in organic geochemistry[Z/OL]. [2023-03-25]. https://web.gps.caltech.edu/-als/research-articles/other_stuff/hayespnp.pdf.
[37]
WENNER D B, TAYLOR H P. Temperatures of serpenti-nization of ultramafic rocks based on O18/O16 fractionation between coexisting serpentine and magnetite[J]. Contributions to Mineralogy and Petrology, 1971, 32(3): 165-185.
[38]
ZHENG Y F. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates[J]. Earth and Planetary Science Letters, 1993, 120(3/4): 247-263.
[39]
FRÜH-GREEN G L, PLAS A, LÉCUYER C. Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at Hess Deep(site 895)[M] //MÉVELC, GILLISK M, ALLANJ F, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Vol.147, 1996: 255-291.
[40]
SCHWARZENBACH E M, VOGEL M, FRÜH G G L, et al. Serpentinization, carbonation, and metasomatism of ultramafic sequences in the northern Apennine ophiolite (NW Italy)[J]. Journal of Geophysical Research Solid Earth, 2021, 126(5): e2020JB020619.
[41]
GIL G, BOROWSKI M P, BARNES J D, et al. Formation of serpentinite-hosted talc in a continental crust setting: Petrographic, mineralogical, geochemical, and O, H and Cl isotope study of the Gilów deposit, Góry Sowie Massif (SW Poland)[J]. Ore Geology Reviews, 2022, 146:104926.
[42]
SCICCHITANO M R, SPICUZZA M J, ELLISON E T, et al. In situ oxygen isotope determination in serpentine minerals by SIMS: Addressing matrix effects and providing new insights on serpentinisation at hole BA1B (Samail ophiolite, Oman)[J]. Geostandards and Geoanalytical Research, 2021, 45(1): 161-187.
[43]
SCICCHITANO M R, DE OBESO J C, BLUM T B, et al. An empirical calibration of the serpentine-water oxygen isotope fractionation at T=25-100℃[J]. Geochimica et Cosmochimica Acta, 2023, 346: 192-206.
[44]
TROCH J, AFFOLTER S, HARRIS C, et al. Oxygen and hydrogen isotope analysis of experimentally generated magmatic and metamorphic aqueous fluids using laser spectroscopy (WS-CRDS)[J]. Chemical Geology, 2021, 584: 120487.
[45]
ROUMÉJON S, WILLIAMS M J, FRÜH G G L. In-situ oxygen isotope analyses in serpentine minerals: Constraints on serpentinization during tectonic exhumation at slow- and ultraslow-spreading ridges[J]. Lithos, 2018, 323: 156-173.
[46]
SNOW E S, CAMPBELL P M. AFM fabrication of sub-10-nanometer metal-oxide devices with in situ control of electrical properties[J]. Science, 1995, 270(5242): 1639-1641.
[47]
EILER J, STOLPER E M, MCCANTA M C. Intra-and intercrystalline oxygen isotope variations in minerals from basalts and peridotites[J]. Journal of Petrology, 2011, 52(7/8): 1393-1413.
[48]
CAMPBELL A C, PALMER M R, KLINKHAMMER G P, et al. Chemistry of hot springs on the Mid-Atlantic Ridge[J]. Nature, 1988, 335(6190): 514-519.
[49]
SCHMIDT G A, BIGG G R, ROHLING E J. Global seawater oxygen-18 database[EB/OL]. [2023-04-10]. http://data.giss.nasa.gov/o18data/.
[50]
姜兆霞, 刘青松. 赤铁矿的定量化及其气候意义[J]. 第四纪研究, 2016, 36(3):676-689.
JIANG Z X, LIU Q S. Quantification of hematite and its climatic significances[J]. Quaternary Sciences, 2016, 36(3): 676-689.
[51]
李彬, 袁道先, 林玉石, 等. 桂林地区降水、洞穴滴水及现代洞穴碳酸盐氧碳同位素研究及其环境意义[J]. 中国科学:D辑, 2000, 30(1):81-87.
LI B, YUAN D X, LIN Y S, et al. Study on oxygen and carbon isotopes of precipitation, cave dripping and modern cave carbonate in Guilin area and its environmental significance[J]. Science in China: Series D, 2000, 30(1): 81-87.
[52]
程海, 艾思本, 王先锋, 等. 中国南方石笋氧同位素记录的重要意义[J]. 第四纪研究, 2005, 25(2):157-163.
CHENG H, AI S B, WANG X F, et al. Oxygen isotope records of stalagmites from southern China[J]. Quaternary Sciences, 2005, 25(2): 157-163.
[53]
毛景文, 赫英, 丁悌平. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J]. 矿床地质, 2002, 21(2):121-128.
MAO J W, HE Y, DING T P. Mantle fluids involved in metallogenesis of Jiaodong (east Shandong) gold district: Evidence of C, O and H isotopes[J]. Mineral Deposits, 2002, 21(2): 121-128.
[54]
郑永飞, 傅斌, 肖益林, 等. 大别山榴辉岩氢氧同位素组成及其地球动力学意义[J]. 中国科学:D辑, 1997, 27(2):121-126.
ZHENG Y F, FU B, XIAO Y L, et al. Hydrogen and oxygen isotopic composition of eclogite in Dabie Mountain and its geodynamic significance[J]. Science in China: Series D, 1997, 27(2): 121-126.
[55]
郑永飞, 陈福坤, 龚冰, 等. 大别-苏鲁造山带超高压变质岩原岩性质:锆石氧同位素和U-Pb年龄证据[J]. 科学通报, 2003, 48(2):110-119.
ZHENG Y F, CHEN F K, GONG B, et al. Protolith properties of ultrahigh-pressure metamorphic rocks in the Dabie-Sulu orogenic belt: Evidence from zircon oxygen isotopes and U-Pb ages[J]. Chinese Science Bulletin, 2003, 48(2): 110-119.
[56]
SPICUZZA M J, VALLEY J W, KOHN M J, et al. The rapid heating, defocused beam technique: A CO2-laser-based method for highly precise and accurate determination of δ18O values of quartz[J]. Chemical Geology, 1998, 144(3/4): 195-203.
[57]
FIEBIG J, WIECHERT U, RUMBLE D III, et al. High-precision in situ oxygen isotope analysis of quartz using an ArF laser[J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 687-702.
[58]
CHAMBERLAIN C P, CONRAD M E. Oxygen-isotope zoning in garnet: A record of volatile transport[J]. Geochi-mica et Cosmochimica Acta, 1993, 57(11): 2613-2629.
[59]
VALLEY J W, CHIARENZELLI J R, MCLELLAND J M. Oxygen isotope geochemistry of zircon[J]. Earth and Planetary Science Letters, 1994, 126(4): 187-206.
[60]
EILER J M, FARLEY K A, VALLEY J W, et al. Oxygen isotope variations in ocean island basalt phenocrysts[J]. Geochimica et Cosmochimica Acta, 1997, 61(11): 2281-2293.
[61]
CRESPIN J, ALEXANDRE A, SYLVESTRE F, et al. IR laser extraction technique applied to oxygen isotope analysis of small biogenic silica samples[J]. Analytical Chemistry, 2008, 80(7): 2372-2378.
[62]
DEKOV V M, CUADROS J, SHANKS W C, et al. Deposition of talc-kerolite-smectite-smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies[J]. Chemical Geology, 2008, 247(1/2): 171-194.
[63]
JENKINS D M. Stability and composition relations of calcic amphiboles in ultramafic rocks[J]. Contributions to Mineralogy and Petrology, 1983, 83: 375-384.
[64]
CHERNOSKY J V, BERMAN R G, JENKINS D M. The stability of tremolite: New experimental data and a thermodynamic assessment[J]. American Mineralogist, 1998, 83(7/8): 726-739.
[65]
EVANS B W. The serpentinite multisystem revisited: Chrysotile is metastable[J]. International Geology Review, 2004, 46(6): 479-506.
[66]
EVANS B W, GHIORSO M S, KUEHNER S M. Thermo-dynamic properties of tremolite: A correction and some comments[J]. American Mineralogist, 2000, 85(3/4): 466-472.
[67]
CLUZEL D, BOULVAIS P, ISEPPI M, et al. Slab-derived origin of tremolite-antigorite veins in a supra-subduction ophiolite: the peridotite Nappe (New Caledonia) as a case study[J]. International Journal of Earth Sciences, 2020, 109: 171-196.
[68]
CHEN Y, HAN X Q, WANG Y J, et al. Precipitation of calcite veins in serpentinized harzburgite at Tianxiu hydrothermal field on Carlsberg Ridge (3.67°N), northwest Indian Ocean: Implications for fluid circulation[J]. Journal of Earth Science, 2020, 31(1): 91-101.
[69]
LIU S A, TENG F Z, YANG W, et al. High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China Craton[J]. Earth and Planetary Science Letters, 2011, 308(1/2): 131-140.
[70]
刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3):399-424.
LIU J W, TIAN S H, WANG L. Application of magnesium stable isotopes for studying important geological processes—a review[J]. Earth Science Frontiers, 2023, 30(3): 399-424.
[71]
高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 27(2):417-432.
GAO X Y, ZHENG Y F. On the Zr-in-rutile and Ti-in-zircon geothermometers[J]. Acta Petrologica Sinica, 2011, 27(2): 417-432.
[72]
池国祥, 卢焕章. 流体包裹体组合对测温数据有效性的制约及数据表达方法[J]. 岩石学报, 2008, 24(9):1945-1953.
CHI G X, LU H Z. Validation and representation of fluid inclusion microthermometric data using the fluid inclusion assemblage (FIA) concept[J]. Acta Petrologica Sinica, 2008, 24(9): 1945-1953.
[73]
BINDEMAN I N, PONOMAREVA V V, BAILEY J C, et al. Volcanic arc of Kamchatka: A province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust[J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 841-865.
[74]
EILER J M. Oxygen isotope variations of basaltic lavas and upper mantle rocks[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 319-364.
PDF(1238 KB)

Accesses

Citation

Detail

Sections
Recommended

/