Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2): 15-25.DOI: 10.3969/j.issn.1001-909X.2024.02.002
Previous Articles Next Articles
CHEN Xiangyu1,2, YU Jiangmei3, SHEN Yuan2,4, NI Yunlin1,2,*, LU Fan5
Received:
2023-07-25
Revised:
2024-01-09
Online:
2024-06-15
Published:
2024-08-09
Contact:
NI Yunlin
CLC Number:
CHEN Xiangyu, YU Jiangmei, SHEN Yuan, NI Yunlin, LU Fan. The applicability study of different typhoon wind fields in typhoon wave simulation in Zhejiang sea area[J]. Journal of Marine Sciences, 2024, 42(2): 15-25.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.02.002
台风名称 | 观测站 | 强风区外风速①的平均相对误差 | 最大风速的平均相对误差 | 有效波高最大值的平均相对误差 | |||||
---|---|---|---|---|---|---|---|---|---|
Holland风场 | ERA5风场 | Holland风场 | ERA5风场 | Holland风场 | ERA5风场 | ||||
利奇马 | 舟山外海 | 37.34% | 29.41% | 9.52% | 23.86% | 1.29% | 23.22% | ||
米娜 | 温州 | 44.29% | 32.00% | 10.19% | 25.77% | 1.44% | 28.10% | ||
烟花 | 嵊山 | 29.76% | 23.45% | 8.62% | 19.44% | 1.01% | 12.76% | ||
灿都 | 舟山外海 | 32.37% | 26.49% | 10.17% | 21.13% | 1.52% | 25.25% | ||
梅花 | 象山 | 38.83% | 19.64% | 8.67% | 17.64% | 1.35% | 11.03% |
Tab.1 Error statistics of the simulated results using the Holland wind fields and the ERA5 wind fields
台风名称 | 观测站 | 强风区外风速①的平均相对误差 | 最大风速的平均相对误差 | 有效波高最大值的平均相对误差 | |||||
---|---|---|---|---|---|---|---|---|---|
Holland风场 | ERA5风场 | Holland风场 | ERA5风场 | Holland风场 | ERA5风场 | ||||
利奇马 | 舟山外海 | 37.34% | 29.41% | 9.52% | 23.86% | 1.29% | 23.22% | ||
米娜 | 温州 | 44.29% | 32.00% | 10.19% | 25.77% | 1.44% | 28.10% | ||
烟花 | 嵊山 | 29.76% | 23.45% | 8.62% | 19.44% | 1.01% | 12.76% | ||
灿都 | 舟山外海 | 32.37% | 26.49% | 10.17% | 21.13% | 1.52% | 25.25% | ||
梅花 | 象山 | 38.83% | 19.64% | 8.67% | 17.64% | 1.35% | 11.03% |
台风名称 | 观测站 | 平均相对误差 | 均方根误差/m | 一致性指数 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Holland风场 | ERA5风场 | 混合风场 | Holland风场 | ERA5风场 | 混合风场 | Holland风场 | ERA5风场 | 混合风场 | ||||
利奇马 | 温州 | 33.47% | 27.60% | 25.51% | 0.48 | 0.44 | 0.46 | 0.91 | 0.94 | 0.93 | ||
米娜 | 舟山外海 | 41.31% | 31.49% | 28.72% | 0.51 | 0.52 | 0.47 | 0.92 | 0.87 | 0.92 | ||
烟花 | 嵊山 | 23.03% | 22.18% | 18.91% | 0.46 | 0.43 | 0.41 | 0.97 | 0.97 | 0.98 | ||
灿都 | 舟山外海 | 26.34% | 25.51% | 25.22% | 0.39 | 0.36 | 0.32 | 0.97 | 0.98 | 0.98 | ||
梅花 | 虾峙 | 25.45% | 21.34% | 15.73% | 0.45 | 0.34 | 0.30 | 0.94 | 0.97 | 0.99 | ||
平均值 | 29.92% | 25.62% | 22.82% | 0.46 | 0.42 | 0.39 | 0.94 | 0.95 | 0.96 |
Tab.2 Error statistics of the simulated significant wave height using the Holland wind fields, the ERA5 wind fields and the mixed wind fields
台风名称 | 观测站 | 平均相对误差 | 均方根误差/m | 一致性指数 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Holland风场 | ERA5风场 | 混合风场 | Holland风场 | ERA5风场 | 混合风场 | Holland风场 | ERA5风场 | 混合风场 | ||||
利奇马 | 温州 | 33.47% | 27.60% | 25.51% | 0.48 | 0.44 | 0.46 | 0.91 | 0.94 | 0.93 | ||
米娜 | 舟山外海 | 41.31% | 31.49% | 28.72% | 0.51 | 0.52 | 0.47 | 0.92 | 0.87 | 0.92 | ||
烟花 | 嵊山 | 23.03% | 22.18% | 18.91% | 0.46 | 0.43 | 0.41 | 0.97 | 0.97 | 0.98 | ||
灿都 | 舟山外海 | 26.34% | 25.51% | 25.22% | 0.39 | 0.36 | 0.32 | 0.97 | 0.98 | 0.98 | ||
梅花 | 虾峙 | 25.45% | 21.34% | 15.73% | 0.45 | 0.34 | 0.30 | 0.94 | 0.97 | 0.99 | ||
平均值 | 29.92% | 25.62% | 22.82% | 0.46 | 0.42 | 0.39 | 0.94 | 0.95 | 0.96 |
数据来源 | 风场 | 有效波高 最大值/m | 平均绝对 误差/m | 均方根 误差/m | 一致性 指数 |
---|---|---|---|---|---|
李新文等[ | ERA5 | 7.9 | 0.36 | 0.49 | 0.97 |
CCMP | 8.8 | 0.52 | 0.74 | 0.96 | |
CFSv2 | 9.6 | 0.76 | 1.12 | 0.90 | |
本文 | ERA5 | 7.56 | 0.34 | 0.43 | 0.97 |
混合风场 | 8.76 | 0.32 | 0.41 | 0.98 |
Tab.3 The simulated significant wave height and the error statistics of this study and those of LI et al[7] during No.2016 typhoon In-Fa at Shengsha station
数据来源 | 风场 | 有效波高 最大值/m | 平均绝对 误差/m | 均方根 误差/m | 一致性 指数 |
---|---|---|---|---|---|
李新文等[ | ERA5 | 7.9 | 0.36 | 0.49 | 0.97 |
CCMP | 8.8 | 0.52 | 0.74 | 0.96 | |
CFSv2 | 9.6 | 0.76 | 1.12 | 0.90 | |
本文 | ERA5 | 7.56 | 0.34 | 0.43 | 0.97 |
混合风场 | 8.76 | 0.32 | 0.41 | 0.98 |
数据来源 | 台风名称 | 风场 | 平均相对误差 |
---|---|---|---|
季余等[ | 烟花 | CCMP | 21.20% |
利奇马 | CCMP | 30.00% | |
灿都 | CCMP | 26.60% | |
本文 | 烟花 | 混合风场 | 18.91% |
利奇马 | 混合风场 | 25.51% | |
灿都 | 混合风场 | 25.22% |
Tab.4 Comparison of the average relative errors of simulated significant wave height of this study and those of JI et al[5]
数据来源 | 台风名称 | 风场 | 平均相对误差 |
---|---|---|---|
季余等[ | 烟花 | CCMP | 21.20% |
利奇马 | CCMP | 30.00% | |
灿都 | CCMP | 26.60% | |
本文 | 烟花 | 混合风场 | 18.91% |
利奇马 | 混合风场 | 25.51% | |
灿都 | 混合风场 | 25.22% |
Fig.7 Comparison of the simulated wind speed and significant wave height between this study and those of JIANG et al[3] during No.1918 typhoon Mitag at Zhoushan external sea area station
[1] | 邱王泽禾, 章蓝文. 1917号台风“塔巴”对浙江沿海风场的影响及其成因分析[J]. 应用海洋学学报, 2021, 40(2):332-341. |
QIU W Z H, ZHANG L W. Analysis of the impacts and formation cause of coastal wind field in Zhejiang by 1917 typhoon Tapah[J]. Journal of Applied Oceanography, 2021, 40(2): 332-341. | |
[2] | 刘晓建, 侯堋, 胡晓张, 等. 超强台风“山竹”风浪过程数值模拟研究[J]. 长沙理工大学学报:自然科学版, 2023, 20(4):117-126. |
LIU X J, HOU P, HU X Z, et al. Numerical simulation of wind wave process of super typhoon “Mangkhut”[J]. Journal of Changsha University of Science & Technology: Natural Science, 2023, 20(4): 117-126. | |
[3] | 蒋璐璐, 涂小萍, 王毅, 等. “米娜”(1918)台风浪特征及其与“利奇马”(1909)的差异[J]. 海洋预报, 2021, 38(4):53-60. |
JIANG L L, TU X P, WANG Y, et al. Characteristics of typhoon-induced wave by Mitag(1918) and their differences with that induced by typhoon Lekima(1909)[J]. Marine Forecasts, 2021, 38(4): 53-60. | |
[4] | 刘竹琴, 殷铭简, 赵西增, 等. 孤立波低顶海堤越浪的数值模拟研究[J]. 海洋工程, 2023, 41(4):91-102. |
LIU Z Q, YIN M J, ZHAO X Z, et al. Numerical study of solitary wave overtopping a low-crested seawall[J]. The Ocean Engineering, 2023, 41(4): 91-102. | |
[5] | 季余, 朱业, 李莉, 等. 浙江沿海台风浪模式的参数适应性研究[J]. 海洋预报, 2023, 40(2):22-31. |
JI Y, ZHU Y, LI L, et al. Study on the parameters adaptability of typhoon wave model in Zhejiang coastal area[J]. Marine Forecasts, 2023, 40(2): 22-31. | |
[6] | 李江夏, 朱钰, 徐杰, 等. ERA-Interim和ERA5再分析风资料在中国近海的适用性对比研究[J]. 海洋通报, 2023, 42(3):260-271. |
LI J X, ZHU Y, XU J, et al. A comparative study on the applicability of ERA-Interim and ERA5 reanalysis wind data in the coastal waters of China[J]. Marine Science Bulletin, 2023, 42(3): 260-271. | |
[7] | 李新文, 丁骏, 黄君宝, 等. 不同风场数据集对台风期间海浪模拟的影响[J]. 水利水运工程学报, 2021(6):34-42. |
LI X W, DING J, HUANG J B, et al. Performance assessment of different wind forcing datasets for simulation of wind wave during typhoon[J]. Hydro-Science and Engineering, 2021(6): 34-42. | |
[8] | 李爱莲, 刘泽, 洪新, 等. 台风条件下ERA5再分析数据对中国近海适用性评估[J]. 海洋科学, 2021, 45(10):71-80. |
LI A L, LIU Z, HONG X, et al. Applicability of the ERA5 reanalysis data to China adjacent sea under typhoon condition[J]. Marine Sciences, 2021, 45(10): 71-80. | |
[9] | 谭海燕, 邵珠晓, 梁丙臣, 等. ERA5风场与NCEP风场在黄海、东海波浪模拟的适用性对比研究[J]. 海洋通报, 2021, 40(5):524-540. |
TAN H Y, SHAO Z X, LIANG B C, et al. A comparative study on the applicability of ERA5 wind and NCEP wind for wave simulation in the Huanghai Sea and East China Sea[J]. Marine Science Bulletin, 2021, 40(5): 524-540. | |
[10] | 张亮, 牛海英, 齐晴. 不同台风场模型的比较研究[J]. 山西建筑, 2015, 41(12):27-28. |
ZHANG L, NIU H Y, QI Q. Comparisons of several typhoon field models[J]. Shanxi Architecture, 2015, 41(12): 27-28. | |
[11] | 唐建, 史剑, 李训强, 等. 基于台风风场模型的台风浪数值模拟[J]. 海洋湖沼通报, 2013(2):24-30. |
TANG J, SHI J, LI X Q, et al. Numerical simulation of typhoon waves with typhoon wind model[J]. Transactions of Oceanology and Limnology, 2013(2): 24-30. | |
[12] | 梁连松, 李瑞杰, 丰青, 等. 舟山海域台风浪数值模拟[J]. 水道港口, 2014, 35(6):582-588. |
LIANG L S, LI R J, FENG Q, et al. Numerical simulation of typhoon wave in Zhoushan[J]. Journal of Waterway and Harbor, 2014, 35(6): 582-588. | |
[13] | 陈橙, 杜飞, 李焱, 等. 福建沿海台风浪模拟及其对台风路径平移的响应[J]. 水运工程, 2022(8):32-39. |
CHEN C, DU F, LI Y, et al. Simulation of typhoon waves along the coast of Fujian and its responses to typhoon path translation[J]. Port & Waterway Engineering, 2022(8): 32-39. | |
[14] | 金罗斌, 陈国平, 赵红军, 等. 合成风场在南海台风浪数值模拟中的研究[J]. 水道港口, 2015, 36(1):12-20. |
JIN L B, CHEN G P, ZHAO H J, et al. Study of combined wind in simulating storm waves in the South China Sea[J]. Journal of Waterway and Harbor, 2015, 36(1): 12-20. | |
[15] | 赵津京, 李继选. 飓风极值波浪数值模拟[J]. 水运工程, 2017(6):39-44. |
ZHAO J J, LI J X. Numerical simulation of extreme hurricane waves[J]. Port & Waterway Engineering, 2017(6): 39-44. | |
[16] | 黄靖茗. 台风路径对浙江渔港避风能力影响的研究[D]. 大连: 大连海洋大学, 2022. |
HUANG J M. Study on berthing capacity evaluation of Zhejiang fishing port under the influence of typhoon[D]. Dalian: Dalian Ocean University, 2022. | |
[17] | 王卫远, 何倩倩, 杨娟. 杭州湾海域50年一遇波浪数值模拟研究[J]. 海洋学研究, 2013, 31(4):44-48. |
WANG W Y, HE Q Q, YANG J. Numerical simulation research of wave with a return period of 50 years in the Hangzhou Bay[J]. Journal of Marine Sciences, 2013, 31(4): 44-48. | |
[18] | 董美莹, 陈锋, 邱金晶, 等. ECMWF驱动场谱逼近对浙江超强台风“利奇马”(2019)精细化数值预报的影响[J]. 大气科学, 2021, 45(5):1071-1086. |
DONG M Y, CHEN F, QIU J J, et al. Impact of spectral nudging technique driven with ECMWF data on the fine numerical prediction of super typhoon Lekima(2019) in Zhejiang Province[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(5): 1071-1086. | |
[19] | 王海平, 董林. 2019年西北太平洋和南海台风活动概述[J]. 海洋气象学报, 2020, 40(2):1-9. |
WANG H P, DONG L. Overview of typhoon activities over western North Pacific and the South China Sea in 2019[J]. Journal of Marine Meteorology, 2020, 40(2): 1-9. | |
[20] | 项素清, 韩兴, 方鹤鸣, 等. 2106号台风“烟花”的路径及降水特点分析[J]. 海洋预报, 2023, 40(3):75-84. |
XIANG S Q, HAN X, FANG H M, et al. The path and precipitation characteristics of “In-Fa” in typhoon 2106[J]. Marine Forecasts, 2023, 40(3): 75-84. | |
[21] | 聂高臻, 钱奇峰. 2022年西北太平洋和南海台风活动概述[J]. 海洋气象学报, 2023, 43(4):99-109. |
NIE G Z, QIAN Q F. Overview of typhoon activities over western North Pacific and the South China Sea in 2022[J]. Journal of Marine Meteorology, 2023, 43(4): 99-109. | |
[22] | 吴福浪, 易军, 蒋迪. 2114号台风“灿都”东海北部海域曲折路径成因分析[J]. 浙江气象, 2022, 43(2):39-44. |
WU F L, YI J, JIANG D. Cause analysis of winding path of Typhoon Candu in the northern East China Sea[J]. Journal of Zhejiang Meteorology, 2022, 43(2): 39-44. | |
[23] | 肖鸿飞, 王冬, 边志刚. 基于ERA5数据集的黄渤海海平面变化特征研究[J]. 海洋湖沼通报, 2020(5):9-15. |
XIAO H F, WANG D, BIAN Z G. Study on the characteristics of sea level change in the Bohai and Yellow Seas based on ERA5 dataset[J]. Transactions of Oceanology and Limnology, 2020(5): 9-15. | |
[24] | 刘涛, 陈学恩, 陈子健. 不同参数模型对南黄海典型台风的适用性研究[J]. 海洋湖沼通报, 2022, 44(2):8-16. |
LIU T, CHEN X E, CHEN Z J. A study on the applicability of different models to typical typhoons in the South Yellow Sea[J]. Transactions of Oceanology and Limnology, 2022, 44(2): 8-16. | |
[25] | HOLLAND G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Monthly Weather Review, 1980, 108(8): 1212-1218. |
[26] | WILLOUGHBY H E, RAHN M E. Parametric representation of the primary hurricane Vortex. Part I: Observations and evaluation of the Holland (1980) model[J]. Monthly Weather Review, 2004, 132(12): 3033-3048. |
[27] | PAN Y, CHEN Y P, LI J X, et al. Improvement of wind field hindcasts for tropical cyclones[J]. Water Science and Engineering, 2016, 9(1): 58-66. |
[28] | 王其松, 邓家泉, 刘诚, 等. 叠加风场在南海台风浪数值后报中的应用研究[J]. 海洋学报, 2017, 39(7):70-79. |
WANG Q S, DENG J Q, LIU C, et al. Application of superimposed wind fields to the hindcast modelling of typhoon-induced waves in the South China Sea[J]. Haiyang Xuebao, 2017, 39(7): 70-79. | |
[29] | ROLDÁN M, MONTOYA R D, RIOS J D, et al. Modified parametric hurricane wind model to improve the asymmetry in the region of maximum winds[J]. Ocean Engineering, 2023, 280: 114508. |
[30] | TIAN Z, ZHANG Y. Numerical estimation of the typhoon-induced wind and wave fields in Taiwan Strait[J]. Ocean Engineering, 2021, 239: 109803. |
[31] | SHAO Z X, LIANG B C, LI H J, et al. Blended wind fields for wave modeling of tropical cyclones in the South China Sea and East China Sea[J]. Applied Ocean Research, 2018, 71: 20-33. |
[32] | XIONG J, YU F J, FU C F, et al. Evaluation and improvement of the ERA5 wind field in typhoon storm surge simulations[J]. Applied Ocean Research, 2022, 118:103000. |
[33] | WILLMOTT C J. On the validation of models[J]. Physical Geography, 1981, 2(2): 184-194. |
[34] | 杨玉华, 雷小途. 我国登陆台风引起的大风分布特征的初步分析[J]. 热带气象学报, 2004, 20(6):633-642. |
YANG Y H, LEI X T. Statistics of strong wind distribution caused by landfall typhoon in China[J]. Journal of Tropical Meteorology, 2004, 20(6): 633-642. | |
[35] | 潘冬冬, 王俊, 周川. 基于“山竹” 台风的波浪数值模拟[J]. 水道港口, 2021, 42(2):194-199,219. |
PAN D D, WANG J, ZHOU C. Numerical simulation of wave based on Typhoon Mangkhut[J]. Journal of Waterway and Harbor, 2021, 42(2): 194-199, 219. | |
[36] | 林金波, 毛鸿飞, 吴光林, 等. 基于混合风场的南海台风浪数值模拟[J]. 广东海洋大学学报, 2021, 41(6):44-52. |
LIN J B, MAO H F, WU G L, et al. Numerical modeling of typhoon waves in South China Sea based on mixed wind field[J]. Journal of Guangdong Ocean University, 2021, 41(6): 44-52. |
[1] | FANG Mingbao, HUANG Jiayu, YANG Wankang, SUN Chunjian. The study on design basis flood level of island nuclear power plant [J]. Journal of Marine Sciences, 2020, 38(4): 80-87. |
[2] | WU Zhi-yuan, JIANG Chang-bo, HE Zhi-yong, CHEN Jie, DENG Bin, XIE Zhen-dong. Coupled atmosphere and wave model and its application in an idealized typhoon [J]. Journal of Marine Sciences, 2019, 37(2): 9-15. |
[3] | CHEN Cheng, LI Yan. Study on Molave typhoon wave in South China Sea based on SWAN model [J]. Journal of Marine Sciences, 2017, 35(4): 14-19. |
[4] | ZHENG Chong-wei, ZHUANG Hui, JIA Ben-kai, GUO Sui-ping. Analysis of ditching probability caused by typhoon wave using WAVEWATCH-III wave model [J]. Journal of Marine Sciences, 2013, 31(3): 36-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||