Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2): 40-54.DOI: 10.3969/j.issn.1001-909X.2024.02.004
Previous Articles Next Articles
SU Han1, CHUANG Ziwei1, ZHANG Chunling1,2,3,*
Received:
2023-06-19
Revised:
2023-09-21
Online:
2024-06-15
Published:
2024-08-09
Contact:
ZHANG Chunling
CLC Number:
SU Han, CHUANG Ziwei, ZHANG Chunling. Application analysis of GDCSM-Argo in evaluating global ocean heat content[J]. Journal of Marine Sciences, 2024, 42(2): 40-54.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.02.004
Fig.3 Time series of ocean heat content anomaly at different depths (a) and time series of temperature anomaly from 0 to 2 000 m (b) (Gray shading in figure a represents the range of triple standard deviations of the 0-2 000 m curve.)
Fig.4 Sections of global ocean heat content anomaly with time and depth at different depths (The dashed line represents the beginning year when the ocean heat content anomaly turned from negative to positive.)
Fig.5 Time series of zonal mean (a) and meridional mean (b) of the ocean heat content anomaly at 0-2 000 m from 2004 to 2021 (The solid black lines are the ENSO index of the Niño3.4.)
Fig.7 Temporal and spatial evolution characteristics of ocean heat contentat at different depths (The figure shows the average OHC from 2013 to 2021 minus the OHC from 2004 to 2012.)
[1] | PÖRTNER H O, ROBERTS D C, MASSON-DELMOTTE V, et al. IPCC special report on the ocean and cryosphere in a changing climate[M]. Cambridge: Cambridge University Press, 2019. |
[2] | BRYAN K, SCHROEDER E. Seasonal heat storage in the North Atlantic Ocean[J]. Journal of Meteorology, 1960, 17(6): 670-674. |
[3] | LEVITUS S. Annual cycle of temperature and heat storage in the world ocean[J]. Journal of Physical Oceanography, 1984, 14(4): 727-746. |
[4] | LEVITUS S, ANTONOV J I, BOYER T P, et al. Warming of the world ocean[J]. Science, 2000, 287(5461): 2225-2229. |
[5] | GILLE S T. Decadal-scale temperature trends in the southern hemisphere ocean[J]. Journal of Climate, 2008, 21(18): 4749-4765. |
[6] | LEVITUS S, ANTONOV J I, BOYER T P, et al. World ocean heat content and thermosteric sea level change (0-2000m), 1955—2010[J]. Geophysical Research Letters, 2012, 39(10): L10603. |
[7] | CHENG L J, TRENBERTH K E, FASULLO J, et al. Improved estimates of ocean heat content from 1960 to 2015[J]. Science Advances, 2017, 3(3): e1601545. |
[8] | SU H, WEI Y N, LU W F, et al. Unabated global ocean warming revealed by ocean heat content from remote sensing reconstruction[J]. Remote Sensing, 2023, 15(3): 566. |
[9] | CHENG L J, VON SCHUCKMANN K, ABRAHAM J P, et al. Past and future ocean warming[J]. Nature Reviews Earth & Environment, 2022, 3: 776-794. |
[10] | WILLIS J K, ROEMMICH D, CORNUELLE B. Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales[J]. Journal of Geophysical Research: Oceans, 2004, 109(C12): C12036. |
[11] | CHENG L J, TRENBERTH K E, FASULLO J T, et al. Evolution of ocean heat content related to ENSO[J]. Journal of Climate, 2019, 32(12): 3529-3556. |
[12] | ISHII M, FUKUDA Y, HIRAHARA S, et al. Accuracy of global upper ocean heat content estimation expected from present observational data sets[J]. SOLA, 2017, 13: 163-167. |
[13] | ROEMMICH D, JOHNSON G C, RISER S, et al. The Argo program: Observing the global oceans with profiling floats[J]. Oceanography, 2009, 22(2): 34-43. |
[14] | LIU Z H, XING X G, CHEN Z H, et al. Twenty years of ocean observations with China Argo[J]. Acta Oceanologica Sinica, 2023, 42(2): 1-16. |
[15] | DOMINGUES C M, CHURCH J A, WHITE N J, et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise[J]. Nature, 2008, 453: 1090-1093. |
[16] | YU X R, MCPHADEN M J. Seasonal variability in the equatorial Pacific[J]. Journal of Physical Oceanography, 1999, 29(5): 925-947. |
[17] | YANG L N, MURTUGUDDE R, ZHOU L, et al. A potential link between the Southern Ocean warming and the South Indian Ocean heat balance[J]. Journal of Geophysical Research: Oceans, 2020, 125(12): e2020JC016132. |
[18] | CHENG L J, ABRAHAM J, GONI G, et al. XBT science: Assessment of instrumental biases and errors[J]. Bulletin of the American Meteorological Society, 2016, 97(6): 924-933. |
[19] | EYRING V, BONY S, MEEHL G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1937-1958. |
[20] | ZHANG C L, WANG D Y, LIU Z H, et al. Global gridded Argo dataset based on gradient-dependent optimal interpo-lation[J]. Journal of Marine Science and Engineering, 2022, 10: 650. |
[21] | ZHANG C L, XU J P, BAO X W, et al. An effective method for improving the accuracy of Argo objective analysis[J]. Acta Oceanologica Sinica, 2013, 32(7): 66-77. |
[22] | 张春玲, 许建平, 鲍献文. 基于Argo资料的梯度依赖相关尺度方法[J]. 解放军理工大学学报:自然科学版, 2015, 16(5):476-483. |
ZHANG C L, XU J P, BAO X W. Gradient-dependent correlation scale method based on Argo[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2015, 16(5): 476-483. | |
[23] | ZHANG C L, WANG Z F, LIU Y. An Argo-based experiment providing near-real-time subsurface oceanic environmental information for fishery data[J]. Fisheries Oceanography, 2021, 30(1): 85-98. |
[24] | CHU P C, FAN C W. Maximum angle method for determi-ning mixed layer depth from seaglider data[J]. Journal of Oceanography, 2011, 67(2): 219-230. |
[25] | LIANG X F, LIU C, PONTE R M, et al. A comparison of the variability and changes in global ocean heat content from multiple objective analysis products during the Argo period[J]. Journal of Climate, 2021, 34: 7875-7895. |
[26] | 邓绍坤, 吴祥柏. 基于再分析数据的南大西洋上层海洋热含量变化研究[J]. 海洋学研究, 2019, 37(3):12-20. |
DENG S K, WU X B. Upper-layer ocean heat content variability in the Southern Atlantic from reanalysis data[J]. Journal of Marine Sciences, 2019, 37(3): 12-20. | |
[27] | ROBERTS C D, PALMER M D, ALLAN R P, et al. Surface flux and ocean heat transport convergence contri-butions to seasonal and interannual variations of ocean heat content[J]. Journal of Geophysical Research: Oceans, 2017, 122(1): 726-744. |
[28] | REYNOLDS R W, SMITH T M. A high-resolution global sea surface temperature climatology[J]. Journal of Climate, 1995, 8(6): 1571-1583. |
[29] | CHENG L J, ABRAHAM J, TRENBERTH K E, et al. Another record: Ocean warming continues through 2021 despite La Niña conditions[J]. Advances in Atmospheric Sciences, 2022, 39(3): 373-385. |
[30] | LI C Y, HUANG J P, HE Y L, et al. Atmospheric warming slowdown during 1998—2013 associated with increasing ocean heat content[J]. Advances in Atmospheric Sciences, 2019, 36(11): 1188-1202. |
[31] | 蒋佳茗, 汪亦蕾. 热带西北太平洋0-300 m热含量的年代际变化[J]. 海洋学研究, 2022, 40(1):1-11. |
JIANG J M, WANG Y L. Interdecadal variation of ocean heat content at depth of 0-300 m in the tropical northwest Pacific[J]. Journal of Marine Sciences, 2022, 40(1): 1-11. | |
[32] | SU H, JIANG J W, WANG A, et al. Subsurface tempe-rature reconstruction for the global ocean from 1993 to 2020 using satellite observations and deep learning[J]. Remote Sensing, 2022, 14(13): 3198. |
[33] | DESBRUYÈRES D G, PURKEY S G, MCDONAGH E L, et al. Deep and abyssal ocean warming from 35 years of repeat hydrography[J]. Geophysical Research Letters, 2016, 43(19): 10356-10365. |
[34] | CHEN X Y, TUNG K K. Varying planetary heat sink led to global-warming slowdown and acceleration[J]. Science, 2014, 345(6199): 897-903. |
[35] | 李宁, 王晓春. 赤道太平洋海域上层海洋热含量及其变化机制的诊断分析[J]. 热带海洋学报, 2019, 38(1):1-10. |
LI N, WANG X C. Diagnostic analysis of upper-ocean heat content change in the equatorial Pacific and related mechanism[J]. Journal of Tropical Oceanography, 2019, 38(1): 1-10. | |
[36] | MAYER M, BALMASEDA M A, HAIMBERGER L. Unprecedented 2015/2016 indo-pacific heat transfer speeds up tropical Pacific heat recharge[J]. Geophysical Research Letters, 2018, 45(7): 3274-3284. |
[37] | 吴晓芬, 许建平. 海洋上层热含量的分布特征、变化模态及观测手段综述[J]. 海洋学研究, 2010, 28(1):46-54. |
WU X F, XU J P. A summary of upper ocean heat content in the tropical westen Pacific Ocean and its distribution features, variation patterns and observations[J]. Journal of Marine Sciences, 2010, 28(1): 46-54. | |
[38] | 钱浩, 张启龙. 热带太平洋—印度洋热含量变异及其与表层水温的关系[J]. 海洋科学进展, 2013, 31(1):1-11. |
QIAN H, ZHANG Q L. Variations of heat content in the tropical pacific-indian ocean and their relations to the sea surface temperature[J]. Advances in Marine Science, 2013, 31(1): 1-11. | |
[39] | 黄科, 张启龙. 热带印度洋上层热含量异常场的年际变率分析[J]. 海洋科学进展, 2011, 29(3):265-274. |
HUANG K, ZHANG Q L. Analysis for interannual variability of heat content anomaly in the upper tropical Indian Ocean[J]. Advances in Marine Science, 2011, 29(3): 265-274. | |
[40] | ZHANG L, HAN W Q, LI Y L, et al. Variability of sea level and upper-ocean heat content in the Indian Ocean: Effects of subtropical Indian Ocean Dipole and ENSO[J]. Journal of Climate, 2019, 32(21): 7227-7245. |
[41] | JOHNSON G C, LYMAN J M, LOEB N G. Improving estimates of Earth’s energy imbalance[J]. Nature Climate Change, 2016, 6: 639-640. |
[1] | JIANG Jiaming, WANG Yilei. Interdecadal variation of ocean heat content at depth of 0-300 m in the tropical northwest Pacific [J]. Journal of Marine Sciences, 2022, 40(1): 1-11. |
[2] | DENG Shao-kun, WU Xiang-bai. Upper-layer ocean heat content variability in the Southern Atlantic from reanalysis data [J]. Journal of Marine Sciences, 2019, 37(3): 12-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||