Analysis of tide observing accuracy at different sampling periods based on BDS/GNSS precise point positioning technique

WEN Song, LUO Xiaowen, CAO Kai, YOU Wei

Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2) : 62-70.

PDF(4565 KB)
PDF(4565 KB)
Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2) : 62-70. DOI: 10.3969/j.issn.1001-909X.2024.02.006

Analysis of tide observing accuracy at different sampling periods based on BDS/GNSS precise point positioning technique

Author information +
History +

Abstract

The influence of sampling period of precision point positioning (PPP) of Global Navigation Satellite System (GNSS) on tide accuracy was studied by using GNSS receiver to collect observation data on marine mobile platform. Different data sets were extracted at periods of 30 s, 60 s, 90 s and 120 s, and dynamic processing was carried out with Trip software to obtain the coordinates of each measuring period. The tide level measurement results of two receivers at four sampling periods were compared respectively, and the standard deviation was used as the evaluation index of accuracy. The results show that the shorter the sampling period, the higher the precision of PPP tide test. When the sampling period is shortened to 60 s, the change is no longer obvious. The sampling period gradually decreases from 120 s to 90 s, 60 s and 30 s, and the accuracy increases by 63.0%, 60.4% and 10.0%, respectively. In addition, the difference of PPP accuracy between BDS/GPS/GLONASS three-system combination GNSS and GPS/GLONASS dual-system combination GNSS is compared. At the sampling periods of 30 s, 60 s, 90 s and 120 s, the PPP tide test accuracy of the three-system combination is 88.9%, 90.4%, 78.7% and 44.7% higher than that of the dual-system combination, respectively.

Key words

precise point positioning / sampling period / positioning accuracy / tide level measurement / BDS/GNSS system

Cite this article

Download Citations
WEN Song , LUO Xiaowen , CAO Kai , et al. Analysis of tide observing accuracy at different sampling periods based on BDS/GNSS precise point positioning technique[J]. Journal of Marine Sciences. 2024, 42(2): 62-70 https://doi.org/10.3969/j.issn.1001-909X.2024.02.006

References

[1]
王盼龙, 周兴华, 王朝阳, 等. 多系统GNSS浮标潮位提取精度研究[J]. 海洋测绘, 2018, 38(6):41-44.
WANG P L, ZHOU X H, WANG C Y, et al. Research on extraction tidal accuracy of multi-system GNSS buoys[J]. Hydrographic Surveying and Charting, 2018, 38(6): 41-44.
[2]
GUO J Y, DONG Z H, TAN Z G, et al. A crossover adjustment for improving sea surface height mapping from in-situ high rate ship-borne GNSS data using PPP technique[J]. Continental Shelf Research, 2016, 125: 54-60.
[3]
SHIH H C, YEH T K, DU Y J, et al. Accuracy assessment of sea surface height measurement obtained from shipborne PPP positioning[J]. Journal of Surveying Engineering, 2021, 147(4): 04021022.
[4]
ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of Geophysical Research, 1997, 102(B3): 5005-5017.
[5]
王朝阳, 周兴华, 李延刚, 等. 远距离GNSS潮位测量精度的影响因素研究[J]. 海洋技术学报, 2017, 36(3):1-6.
WANG Z Y, ZHOU X H, LI Y G, et al. Research on the influence factors in the precision of long range GNSS tidal measurement[J]. Journal of Ocean Technology, 2017, 36(3): 1-6.
[6]
XU P, SHI C, FANG R, et al. High-rate precise point positioning (PPP) to measure seismic wave motions: An experimental comparison of GPS PPP with inertial measurement units[J]. Journal of Geodesy, 2013, 87: 361-372.
[7]
WATSON C, COLEMAN R, WHITE N, et al. Absolute calibration of TOPEX/Poseidon and Jason-1 using GPS buoys in Bass Strait, Australia[J]. Marine Geodesy, 2003, 26(3/4): 285-304.
[8]
吴萧楠, 何秀凤, 何丽娜, 等. 精密单点定位技术的塞文大桥变形监测[J]. 测绘科学, 2020, 45(11):41-47.
WU X N, HE X F, HE L N, et al. Deformation monitoring of Severn bridge based on precise point positioning technology[J]. Science of Surveying and Mapping, 2020, 45(11): 41-47.
[9]
赵建虎, 王胜平, 张红梅, 等. 基于GPS PPK/PPP的长距离潮位测量[J]. 武汉大学学报:信息科学版, 2008, 33(9):910-913.
ZHAO J H, WANG S P, ZHANG H M, et al. Long-distance and on-the-fly GPS tidal level measurement based on GPS PPK/PPP[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 910-913.
[10]
秦海波. 基于GNSS技术的近海岸潮位提取关键技术研究[D]. 南昌: 东华理工大学, 2015.
QIN H B. Research on key technology in the tidal level extraction system based on GNSS technology[D]. Nanchang: East China Institute of Technology, 2015.
[11]
KUO C Y, CHIU K W, CHIANG K W, et al. High-frequency sea level variations observed by GPS buoys using precise point positioning technique[J]. Terrestrial, Atmos-pheric and Oceanic Sciences, 2012, 23(2): 209-218.
[12]
EROL S, ALKAN R M, OZULU İ M, et al. Impact of different sampling rates on precise point positioning performance using online processing service[J]. Geo-spatial Information Science, 2021, 24(2): 302-312.
[13]
BAHADUR B, NOHUTCU M. Impact of observation sampling rate on Multi-GNSS static PPP performance[J]. Survey Review, 2021, 53(378): 206-215.
[14]
CAI C S, GAO Y. Modeling and assessment of combined GPS/GLONASS precise point positioning[J]. GPS Solutions, 2013, 17(2): 223-236.
[15]
TU R, GE M R, ZHANG H P, et al. The realization and convergence analysis of combined PPP based on raw observation[J]. Advances in Space Research, 2013, 52(1): 211-221.
[16]
JOKINEN A, FENG S J, SCHUSTER W, et al. GLONASS aided GPS ambiguity fixed precise point positioning[J]. Journal of Navigation, 2013, 66(3): 399-416.
[17]
PAN Z P, CHAI H Z, KONG Y L. Integrating multi-GNSS to improve the performance of precise point positioning[J]. Advances in Space Research, 2017, 60(12): 2596-2606.
[18]
张小红, 李星星, 李盼. GNSS精密单点定位技术及应用进展[J]. 测绘学报, 2017, 46(10):1399-1407.
ZHANG X H, LI X X, LI P. Review of GNSS PPP and its application[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1399-1407.
[19]
李星星. GNSS精密单点定位及非差模糊度快速确定方法研究[D]. 武汉: 武汉大学, 2013.
LI X X. Rapid ambiguity resolution in GNSS precise point positioning[D]. Wuhan: Wuhan University, 2013.
[20]
范士杰, 秦学彬, 吴绍玉, 等. 不同星历和钟差产品的PPP验潮试验及结果分析[J]. 海洋测绘, 2014, 34(4):43-46.
FAN S J, QIN X B, WU S Y, et al. Tidal level measurement test and result analysis based on PPP with different ephemeris and clock offsets[J]. Hydrographic Surveying and Charting, 2014, 34(4): 43-46.
[21]
梁冠辉, 陶常飞, 周兴华, 等. 新型远距离验潮系统集成设计与研制[J]. 海洋科学进展, 2019, 37(1):129-139.
LIANG G H, TAO C F, ZHOU X H, et al. Integrated design and development of a new type tide gauge system used in open sea[J]. Advances in Marine Science, 2019, 37(1): 129-139.
[22]
马飞虎, 赵建虎, 王胜平, 等. 近岸海域GPS在航潮位解算中潮位的提取方法研究[J]. 武汉大学学报:信息科学版, 2008, 33(12):1279-1282.
MA F H, ZHAO J H, WANG S P, et al. Research on methods of extracting on-the-fly tidal level from GPS observation in near-shore area[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12): 1279-1282.
[23]
管斌, 孙中苗, 刘晓刚, 等. 卫星高度计定标中GPS浮标测量海面高的FIR低通滤波方法[J]. 测绘科学技术学报, 2018, 35(2):147-152.
GUAN B, SUN Z M, LIU X G, et al. Method of finite impulse response filtering of sea surface height measured by GPS buoy in the application of satellite altimeter calibration[J]. Journal of Geomatics Science and Technology, 2018, 35(2): 147-152.
[24]
关小果. 北斗/GNSS海上精密单点定位技术及其质量检核方法研究[D]. 郑州: 战略支援部队信息工程大学, 2020.
GUAN X G. Research on BDS/GNSS marine precise point positioning technology and quality control method[D]. Zhengzhou: PLA Strategic Support Force Information Engineering University, 2020.
[25]
贾雪, 徐炜. GPS/BDS/GALILEO多系统融合伪距单点定位性能分析[J]. 全球定位系统, 2017, 42(6):16-23.
JIA X, XU W. Performance analysis of GPS/BDS/GALILEO multi-system combination pseudo-range point positioning[J]. GNSS World of China, 2017, 42(6): 16-23.
PDF(4565 KB)

Accesses

Citation

Detail

Sections
Recommended

/