Analysis of the tidal characteristics along the tidal reach of Xijiang River based on high and low tide levels

WU Jiaxing, PENG Qi, ZHANG Zhuo, CHEN Xinying, CHEN Peng, WEN Yajuan, WANG Haocheng, ZHANG Lu

Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2) : 91-103.

PDF(9860 KB)
PDF(9860 KB)
Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2) : 91-103. DOI: 10.3969/j.issn.1001-909X.2024.02.009

Analysis of the tidal characteristics along the tidal reach of Xijiang River based on high and low tide levels

Author information +
History +

Abstract

By interpolation of high and low tide data and application of NS_TIDE model, the tidal characteristics of the tidal reach of Xijiang River (Makou-Dahengqin) were analyzed. Compared with cubic spline interpolation and linear interpolation, it is found that Hermite interpolation is the best method to simulate the hourly tide level. The verification results of tide level show that the overall error of NS_TIDE model is low, and the outliers mainly come from the influence of typhoon and flood. The mean water level and the amplitude of tidal component in the tidal reach of Xijiang River are different in wet and dry season. The influence of runoff in the upper reaches is greater than that of the tides, and the opposite is true in the lower reaches. With the increase of runoff and tidal difference, the mean water level of the upper reaches increases, and the influence on the amplitude and the phase of tidal component is different in different section, which is related to the spatial location and the frequency of the tidal component.

Key words

high and low water interpolation / harmonic analysis / river discharge / ocean tides

Cite this article

Download Citations
WU Jiaxing , PENG Qi , ZHANG Zhuo , et al . Analysis of the tidal characteristics along the tidal reach of Xijiang River based on high and low tide levels[J]. Journal of Marine Sciences. 2024, 42(2): 91-103 https://doi.org/10.3969/j.issn.1001-909X.2024.02.009

References

[1]
FOREMAN M G G, HENRY R F. Tidal analysis based on high and low water observations[M]. Institute of Ocean Sciences, Patricia Bay, 1979.
[2]
戴荣, 徐俊. 基于高低潮分析的天文潮推算[J]. 西北水电, 2011(2):8-10.
DAI R, XU J. Astronomical tide calculation based on analysis of low and high tides[J]. Northwest Hydropower, 2011(2): 8-10.
[3]
LUO X Y, ZHANG W, CHEN S J, et al. Evolution of reversal of the lowest low waters in a tidal river network[J]. Journal of Hydrology, 2020, 585: 124701.
[4]
李阳东, 李仁虎, 常亮. 基于高、低潮的潮汐调和常数提取及潮汐预报[J]. 海洋湖沼通报, 2020(2):55-63.
LI Y D, LI R H, CHANG L. Tidal harmonic constants extraction and tidal prediction based on high and low tidal waters[J]. Transactions of Oceanology and Limnology, 2020(2): 55-63.
[5]
王如云, 占飞, 周钧, 等. 基于高低潮的优化保形调和分析模型(OCTHM)及算法[J]. 水运工程, 2014(8):15-19.
WANG R Y, ZHAN F, ZHOU J, et al. Optimizing conformal tidal harmonic analysis model(OCTHM) and algorithm based on high & low water observations[J]. Port & Waterway Engineering, 2014(8): 15-19.
[6]
刘娇, 史国友, 朱凯歌, 等. 基于调和分析和ARIMA-SVR的组合潮汐预测模型[J]. 上海海事大学学报, 2019, 40(3):93-99.
LIU J, SHI G Y, ZHU K G, et al. A combined tide prediction model based on harmonic analysis and ARIMA-SVR[J]. Journal of Shanghai Maritime University, 2019, 40(3): 93-99.
[7]
蔡松, 叶瑞明, 王齐林, 等. 基于无为原理的潮汐分析与预测[J]. 海洋测绘, 2021, 41(3):47-51.
CAI S, YE R M, WANG Q L, et al. Tide analysis and prediction based on inaction principle[J]. Hydrographic Surveying and Charting, 2021, 41(3): 47-51.
[8]
王长海. 潮汐调和分析的一种模式[J]. 海洋预报, 1995, 12(4):71-76.
WANG C H. A model of tidal harmonic analysis[J]. Marine Forecasts, 1995, 12(4):71-76.
[9]
MATTE P, JAY D A, ZARON E D. Adaptation of classical tidal harmonic analysis to nonstationary tides, with application to river tides[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(3): 569-589.
[10]
PAN H D, X Q, WANG Y Y, et al. Exploration of tidal-fluvial interaction in the Columbia River Estuary using S_TIDE[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6598-6619.
[11]
PAWLOWICZ R, BEARDSLEY B, LENTZ S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers & Geosciences, 2002, 28(8): 929-937.
[12]
MATTE P, SECRETAN Y, MORIN J. Temporal and spatial variability of tidal-fluvial dynamics in the St. Lawrence fluvial estuary: An application of nonstationary tidal harmonic analysis[J]. Journal of Geophysical Research: Oceans, 2014, 119(9): 5724-5744.
[13]
吕咸青, 潘海东, 王雨哲. 潮汐调和分析方法的回顾与展望[J]. 海洋科学, 2021, 45(11):132-143.
X Q, PAN H D, WANG Y Z. Review and prospect of tidal harmonic analysis method[J]. Marine Sciences, 2021, 45(11): 132-143.
[14]
KUKULKA T, JAY D A. Impacts of Columbia River discharge on salmonid habitat: 1. A nonstationary fluvial tide model[J]. Journal of Geophysical Research: Oceans, 2003, 108(C9): 3293.
[15]
KUKULKA T, JAY D A. Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat[J]. Journal of Geophysical Research: Oceans, 2003, 108(C9): 3294.
[16]
JAY D A, FLINCHEM E P. A comparison of methods for analysis of tidal records containing multi-scale non-tidal background energy[J]. Continental Shelf Research, 1999, 19(13): 1695-1732.
[17]
江海东, 费岳军, 应岳. 使用MATLAB拟合工具箱进行潮汐调和分析[J]. 海洋技术, 2012, 31(3):33-36.
JIANG H D, FEI Y J, YING Y. Tidal harmonic analysis using the MATLAB fitting toolbox[J]. Ocean Technology, 2012, 31(3): 33-36.
[18]
李大炜, 李建成, 团文征. 越南沿海若干验潮站长期观测资料的潮汐分析[J]. 海洋测绘, 2017, 37(3):29-31,52.
LI D W, LI J C, TUAN W Z. Tidal analysis of long-term observation data of tide gauges along Vietnam coast[J]. Hydrographic Surveying and Charting, 2017, 37(3): 29-31, 52.
[19]
宋艳朋, 周兴华, 付延光, 等. Matlab.NET混合编程在潮汐调和分析与预报中的应用[J]. 测绘与空间地理信息, 2017, 40(5):59-61,64.
SONG Y P, ZHOU X H, FU Y G, et al. The application of integrated programming technology of Matlab.NET in tidal harmonic analysis and prediction[J]. Geomatics & Spatial Information Technology, 2017, 40(5): 59-61, 64.
[20]
GAN M, CHEN Y P, PAN S Q, et al. A modified nonstationary tidal harmonic analysis model for the Yangtze estuarine tides[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36(4): 513-525.
[21]
YU X Y, ZHANG W, HOITINK A J F. Impact of river discharge seasonality change on tidal duration asymmetry in the Yangtze River Estuary[J]. Scientific Reports, 2020, 10: 6304.
[22]
蔡华阳, 杨昊, 郭晓娟, 等. 珠江磨刀门河口径潮动力耦合条件下余水位的多时空尺度分析[J]. 海洋学报, 2018, 40(7):55-65.
CAI H Y, YANG H, GUO X J, et al. Investigation of temporal-spatial distribution patterns of residual water level under the influence of tide-river interaction in the Modaomen Estuary, Zhujiang River[J]. Haiyang Xuebao, 2018, 40(7): 55-65.
[23]
唐启邦, 欧素英, 蔡华阳, 等. 珠江磨刀门河口水位与海平面、上游流量的联合分布关系异变研究[J]. 海洋与湖沼, 2020, 51(5):1080-1092.
TANG Q B, OU S Y, CAI H Y, et al. Abrupt variation of joint distibution of water level, sea level, and river discharge in the Modaomen estuary of the Zhujiang(Pearl) River[J]. Oceanologia et Limnologia Sinica, 2020, 51(5): 1080-1092.
[24]
张先毅, 杨昊, 黄竞争, 等. 强人类活动驱动下珠江磨刀门河口径潮动力的季节性异变特征[J]. 海洋与湖沼, 2020, 51(5):1043-1054.
ZHANG X Y, YANG H, HUANG J Z, et al. Impact of intensive human activity on seasonal variation in river-tide dynamics in the Modaomen estuary of Zhujiang (Pearl) River[J]. Oceanologia et Limnologia Sinica, 2020, 51(5): 1043-1054.
[25]
钟子悦, 余明辉, 陈小齐, 等. 珠江三角洲河网地形和径流条件变化对潮动力格局的影响[J]. 水资源保护, 2023, 39(3):213-221.
ZHONG Z Y, YU M H, CHEN X Q, et al. Effects of changes in river network topography and runoff on tidal dynamic pattern in Pearl River Delta[J]. Water Resources Protection, 2023, 39(3): 213-221.
[26]
邱秀芳, 李博, 王博芝, 等. 珠江河网典型横向汊道径潮动力时空差异性分析:以“南沙—南华” 横向汊道为例[J]. 热带海洋学报, 2023, 42(4):77-90.
QIU X F, LI B, WANG B Z, et al. Spatial-temporal variations in tide-river dynamics of typical transverse channel in the Pearl River channel networks—Taking the ‘Nansha-Nanhua’ transverse channel as an example[J]. Journal of Tropical Oceanography, 2023, 42(4): 77-90.
[27]
蒋陈娟, 周佳楠, 杨清书. 珠江磨刀门河口潮汐动力变化对人类活动的响应[J]. 热带海洋学报, 2020, 39(6):66-76.
JIANG C J, ZHOU J N, YANG Q S. Effects of human intervention on tidal dynamics in the Modaomen Estuary, Pearl River[J]. Journal of Tropical Oceanography, 2020, 39(6): 66-76.
[28]
武家兴, 张卓, 陈鹏, 等. 考虑流量变化影响的西江感潮河道潮汐特征分析[J]. 海洋学报, 2023, 45(7):8-24.
WU J X, ZHANG Z, CHEN P, et al. Analysis of the tidal characteristics along the tidal reach of Xijiang River considering river discharge variation[J]. Haiyang Xuebao, 2023, 45(7): 8-24.
[29]
武家兴, 王浩丞, 张璐, 等. 西江感潮河道(马口—磨刀门)的潮波传播特征研究[J]. 热带海洋学报, 2023, 42(4):47-62.
WU J X, WANG H C, ZHANG L, et al. Investigation into the tidal propagation features along the tidal reach of the West River (Makou—Modaomen)[J]. Journal of Tropical Oceanography, 2023, 42(4): 47-62.
[30]
中华人民共和国水利部. 珠江流域水文资料第8卷第7册珠江三角洲河口区(二)[G]. 2017.
Ministry of Water Resources of the People’s Republic of China. Hydrological data of the Pearl River basin volume 8, book 7: Pearl River delta estuary area (II)[G]. 2017.
[31]
刘田甲. 潮汐数据插值方法研究[D]. 南京: 南京师范大学, 2017.
LIU T J. Research on interpolation method of tidal data[D]. Nanjing: Nanjing Normal University, 2017.
[32]
乔光全, 徐润刚, 卢永昌, 等. 高低潮位扩展至逐时潮位的插值方法比较[J]. 水运工程, 2019(9):6-12.
QIAO G Q, XU R G, LU Y C, et al. Comparison of interpolation method for high and low tidal lever extending to hourly data[J]. Port & Waterway Engineering, 2019(9): 6-12.
[33]
WONG L A, CHEN J C, XUE H, et al. A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters: 1. Simulations and comparison with observations[J]. Journal of Geophysical Research: Oceans, 2003, 108(C5): 3156.
[34]
马玉婷, 蔡华阳, 杨昊, 等. 珠江磨刀门河口水位分布演变特征及其对人类活动的响应[J]. 热带海洋学报, 2022, 41(2):52-64.
MA Y T, CAI H Y, YANG H, et al. Evolution of water level profile dynamics in the Modaomen Estuary of the Pearl River and its responses to human activities[J]. Journal of Tropical Oceanography, 2022, 41(2): 52-64.
[35]
HOITINK A J F, JAY D A. Tidal river dynamics: Implications for deltas[J]. Reviews of Geophysics, 2016, 54(1): 240-272.
[36]
JAY D A, LEFFLER K, DIEFENDERFER H L, et al. Tidal-fluvial and estuarine processes in the lower Columbia River: I. Along-channel water level variations, Pacific Ocean to Bonneville Dam[J]. Estuaries and Coasts, 2015, 38(2): 415-433.
[37]
BUSCHMAN F A, HOITINK A J F, VAN DER VEGT M, et al. Subtidal water level variation controlled by river flow and tides[J]. Water Resources Research, 2009, 45(10): W10420.
[38]
SASSI M G, HOITINK A J F. River flow controls on tides and tide-mean water level profiles in a tidal freshwater river[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4139-4151.
PDF(9860 KB)

Accesses

Citation

Detail

Sections
Recommended

/