Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (3): 28-37.DOI: 10.3969/j.issn.1001-909X.2024.03.002
Previous Articles Next Articles
LU Yuting1(), GUO Wenkang2, DING Jun3, WANG Linfeng2, LI Xiaohui4, WANG Jiuke1,2,*()
Received:
2023-12-31
Revised:
2024-04-16
Online:
2024-09-15
Published:
2024-11-25
CLC Number:
LU Yuting, GUO Wenkang, DING Jun, WANG Linfeng, LI Xiaohui, WANG Jiuke. Progress and challenges of artificial intelligence wave forecasting[J]. Journal of Marine Sciences, 2024, 42(3): 28-37.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.03.002
[1] | 管长龙. 我国海浪理论及预报研究的回顾与展望[J]. 青岛海洋大学学报, 2000, 30(4):549-556. |
GUAN C L. A review of history and prospect for study of sea wave theory and its forecast in China[J]. Journal of Ocean University of Qingdao, 2000, 30(4): 549-556. | |
[2] |
YOUNG I R, RIBAL A. Multiplatform evaluation of global trends in wind speed and wave height[J]. Science, 2019, 364(6440): 548-552.
DOI PMID |
[3] | HEMER M A, WANG X L, WEISSE R, et al. Advancing wind-waves climate science[J]. Bulletin of the American Meteorological Society, 2012, 93(6): 791-796. |
[4] | WANG X L, SWAIL V R, ZWIERS F W, et al. Detection of external influence on trends of atmospheric storminess and northern oceans wave heights[J]. Climate Dynamics, 2009, 32: 189-203. |
[5] |
YOUNG I R, ZIEGER S, BABANIN A V. Global trends in wind speed and wave height[J]. Science, 2011, 332(6028): 451-455.
DOI PMID |
[6] | YOUNG I R, VINOTH J, ZIEGER S, et al. Investigation of trends in extreme value wave height and wind speed[J]. Journal of Geophysical Research: Oceans, 2012, 117: C00J06. |
[7] | MENTASCHI L, VOUSDOUKAS M I, VOUKOUVALAS E, et al. Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns[J]. Geophysical Research Letters, 2017, 44(5): 2416-2426. |
[8] | OUMERACI H. Review and analysis of vertical breakwater failures-Lessons learned[J]. Coastal Engineering, 1994, 22(1/2): 3-29. |
[9] | PULLEN T, ALLSOP N W H, BRUCE T, et al. EurOtop: Wave overtopping of sea defences and related structures: Assessment manual[M]. [S.l.]: Boyens Medien GmbH, 2007. |
[10] | VANEM E, FAZERES-FERRADOSA T, ROSA-SANTOS P, et al. Statistical description and modelling of extreme ocean wave conditions[J]. Proceedings of the Institution of Civil Engineers-Maritime Engineering, 2019, 172(4): 124-132. |
[11] | ADYTIA D, SAEPUDIN D, PUDJAPRASETYA S R, et al. A deep learning approach for wave forecasting based on a spatially correlated wind feature, with a case study in the Java Sea, Indonesia[J]. Fluids, 2022, 7(1): 39. |
[12] | TÜR R. Maximum wave height hindcasting using ensemble linear-nonlinear models[J]. Theoretical and Applied Clima-tology, 2020, 141: 1151-1163. |
[13] | 屈远, 高志一, 蔡靖泽, 等. 数值模型和智能模型的海浪预报能力比较[J]. 海洋预报, 2022, 39(5):17-26. |
QU Y, GAO Z Y, CAI J Z, et al. Comparison of wave prediction ability between numerical model and AI model[J]. Marine Forecasts, 2022, 39(5): 17-26. | |
[14] | OWENS E H. Beaufort wind scale[M]//SCHWARTZ M. Beaches and coastal geology. New York: Springer, 1982: 161-162. |
[15] | 许富祥, 许林之. 海浪预报方法综述(一)[J]. 海洋预报, 1989(3):33-43. |
XU F X, XU L Z. A review of wave forecasting methods (I)[J]. Marine Forecasts, 1989 (3): 33-43. | |
[16] | SVERDRUP H U, MUNK W H. Wind, sea and swell: theory of relations for forecasting[M]. Washington, D.C: Hydrographic Office, 1947. |
[17] | 文圣常. 普遍风浪谱及其应用[J]. 山东海洋学院学报, 1960:15-43. |
WEN S C. Universal wind wave spectrum and its applications[J]. Journal of Shandong Ocean University, 1960: 15-43. | |
[18] | PIERSON W J, NEUMANN G, JAMES R. Practical methods for observing and forecasting ocean waves by means of wave spectra and statistics[J]. Hydrographic Office Publication, 1955, 603: 300. |
[19] | 文圣常. 我在海浪理论及应用领域的研究工作[J]. 中国科学院院刊, 1996(2):61. |
WEN S C. My Research work in the field of wave theory and applications[J]. Bulletin of the Chinese Academy of Sciences, 1996(2): 61. | |
[20] | 汪炳祥. 新型风浪谱及其应用[J]. 海洋与湖沼, 1962(Z2):142-160. |
WANG B X. New type of wind wave spectrum and its applications[J]. Oceanologia et Limnologia Sinica, 1962(Z2): 142-160. | |
[21] | 汪炳祥. 风浪谱的形式的再探讨[J]. 海洋与湖沼, 1964(1): 23-37. |
WANG B X. Reconsideration of the form of wave spectrum[J]. Oceanologia et Limnologia Sinica, 1964(1): 23-37. | |
[22] | WILSON B W. Numerical prediction of ocean waves in the North Atlantic for December, 1959[J]. Deutsche Hydro-grafische Zeitschrift, 1965, 18(3): 114-130. |
[23] | BRETSCHNEIDER C. Wave variability and wave spectra for wind generated gravity waves[J]. Beach Erosion Board, 1959: 196. |
[24] | TSYPLUKHIN V F, KHASKHACHIKH G D, SAMARIN V G. U.S. Army coastal engineering research center[J]. Hydro-technical Construction, 1971, 5(9): 860-863. |
[25] | 关孟儒. 台风波浪推算方法的探讨[J]. 华东水利学院学报, 1981(2):17-36. |
GUAN M R. A discussion on the calculation method of typhoon waves[J]. Journal of East China College of Hydraulic Engineering, 1981(2): 17-36. | |
[26] | SWAMP Group. Wave dynamics (Book reviews: Ocean wave modeling)[J]. Science, 1985, 229.DOI:10.1126/science.229.4711.377. |
[27] | PHILLIPS O M. The equilibrium range in the spectrum of wind-generated waves[J]. Journal of Fluid Mechanics, 1958, 4(4): 426. |
[28] | WAMDI Group. The WAM model—a third generation ocean wave prediction model[J]. Journal of Physical Oceanography, 1988, 18(12): 1775-1810. |
[29] | BOOIJ N, RIS R C, HOLTHUIJSEN L H. A third-generation wave model for coastal regions: 1. Model description and validation[J]. Journal of Geophysical Research: Oceans, 1999, 104(C4): 7649-7666. |
[30] | HASSELMANN S. The WAM wave model system[R]. Max Planck Institut für Meteorologie, 1987. |
[31] | TOLMAN H L, BALASUBRAMANIYAN B, BURROUGHS L D, et al. Development and implementation of wind-generated ocean surface wave modelsat NCEP[J]. Weather and Forecasting, 2002, 17(2): 311-333. |
[32] | MOSAVI A, OZTURK P, CHAU K W. Flood prediction using machine learning models: Literature review[J]. Water, 2018, 10(11): 1536. |
[33] | SHAMSHIRBAND S, MOSAVI A, RABCZUK T, et al. Prediction of significant wave height; comparison between nested grid numerical model, and machine learning models of artificial neural networks, extreme learning and support vector machines[J]. Engineering Applications of Compu-tational Fluid Mechanics, 2020, 14(1): 805-817. |
[34] | ZENG P. Artificial neural networks principle for finite element method[J]. Zeitschrift fur Angewandte Mathematik und Mechanik, 1996, 76(S5): 565-566. |
[35] | FUNAHASHI K I, NAKAMURA Y. Approximation of dynamical systems by continuous time recurrent neural networks[J]. Neural Networks, 2008, 6(6): 801-806. DOI:10.1016/S0893-6080(05)80125-X. |
[36] | MARCHI E, VESPERINI F, EYBEN F, et al. A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional LSTM neural networks[C]// International Conference on Acoustics, Speech and Signal Processing (ICASSP). South Brisbane, QLD, Australia. IEEE, 2015: 1996-2000. |
[37] | CHEN K, TAO W B. Once for all: A two-flow convolutional neural network for visual tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(12): 3377-3386. |
[38] | ŠEVO I, AVRAMOVIĆ A. Convolutional neural network based automatic object detection on aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 740-744. |
[39] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[Z/OL]. arXiv, 2017: 1706.03762. http://arxiv.org/abs/1706.03762. |
[40] | LIN T, WANG Y, LIU X, et al. A survey of transformers[J]. AI Open, 2022, 3: 111-132. |
[41] |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80.
DOI PMID |
[42] | ZHOU J, CUI G Q, HU S D, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1: 57-81. |
[43] | HUANG H, ZENG Z N, YAO D Y, et al. Spatial-temporal ConvLSTM for vehicle driving intention prediction[J]. Tsinghua Science and Technology, 2022, 27(3): 599-609. |
[44] | LIM X Y, GAN K B, ABD AZIZ N A. Deep ConvLSTM network with dataset resampling for upper body activity recognition using minimal number of IMU sensors[J]. Applied Sciences, 2021, 11(8): 3543. |
[45] | PENG S Q, XIE L. Effect of determining initial conditions by four-dimensional variational data assimilation on storm surge forecasting[J]. Ocean Modelling, 2006, 14(1/2): 1-18. |
[46] | LIU X, WANG Q, MU M. Optimal initial error growth in the prediction of the Kuroshio large meander based on a high-resolution regional ocean model[J]. Advances in Atmospheric Sciences, 2018, 35(11): 1362-1371. |
[47] | ZHANG Z X, LI C W, LI Y S, et al. Incorporation of artificial neural networks and data assimilation techniques into a third-generation wind-wave model for wave forecasting[J]. Journal of Hydroinformatics, 2006, 8(1): 65-76. |
[48] | 许立兵, 王安喜, 汪纯阳, 等. 基于机器学习的海洋环境预报订正方法研究[J]. 海洋通报, 2020, 39(6): 695-704. |
XU L B, WANG A X, WANG C Y, et al. Research on correction method of ocean environmental forecasting based on machine learning[J]. Marine Bulletin, 2020, 39(6): 695-704. | |
[49] | ELLENSON A, PEI Y L, WILSON G, et al. An application of a machine learning algorithm to determine and describe error patterns within wave model output[J]. Coastal Engi-neering, 2020, 157: 103595. |
[50] | GRACIA S, OLIVITO J, RESANO J, et al. Improving accuracy on wave height estimation through machine learning techniques[J]. Ocean Engineering, 2021, 236: 108699. |
[51] | ALI M, PRASAD R. Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition[J]. Renewable and Sustainable Energy Reviews, 2019, 104: 281-295. |
[52] | DEO M C, SRIDHAR NAIDU C. Real time wave forecasting using neural networks[J]. Ocean Engineering, 1998, 26(3): 191-203. |
[53] | LONDHE S N, PANCHANG V. One-day wave forecasts based on artificial neural networks[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(11): 1593-1603. |
[54] | DEKA P C, PRAHLADA R. Discrete wavelet neural network approach in significant wave height forecasting for multistep lead time[J]. Ocean Engineering, 2012, 43: 32-42. |
[55] | DIXIT P, LONDHE S, DANDAWATE Y. Removing predic-tion lag in wave height forecasting using Neuro-Wavelet modeling technique[J]. Ocean Engineering, 2015, 93: 74-83. |
[56] | MAHJOOBI J, ADELI MOSABBEB E. Prediction of signi-ficant wave height using regressive support vector machines[J]. Ocean Engineering, 2009, 36(5): 339-347. |
[57] | ELBISY M S. Sea wave parameters prediction by support vector machine using a genetic algorithm[J]. Journal of Coastal Research, 2015, 314: 892-899. |
[58] | GOLESTANI M, ZEINODDINI M. Gap-filling and predicting wave parameters using support vector regression method[C]//Proceedings of ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands. 2011: 613-620. |
[59] | NITSURE S P, LONDHE S N, KHARE K C. Wave forecasts using wind information and genetic programming[J]. Ocean Engineering, 2012, 54: 61-69. |
[60] | KUMAR N K, SAVITHA R, AL MAMUN A. Ocean wave height prediction using ensemble of extreme learning machine[J]. Neurocomputing, 2018, 277: 12-20. |
[61] | HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: A new learning scheme of feedforward neural networks[C]// 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541). Budapest, Hungary. DOI:10.1109/IJCNN.2004.1380068. |
[62] | KALOOP M R, KUMAR D, ZARZOURA F, et al. A wavelet-Particle swarm optimization-Extreme learning machine hybrid modeling for significant wave height prediction[J]. Ocean Engineering, 2020, 213: 107777. |
[63] | MANDAL S, PRABAHARAN N. Ocean wave forecasting using recurrent neural networks[J]. Ocean Engineering, 2006, 33(10): 1401-1410. |
[64] | WEI C C, CHENG J Y. Nearshore two-step typhoon wind-wave prediction using deep recurrent neural networks[J]. Journal of Hydroinformatics, 2020, 22(2): 346-367. |
[65] | MIKY Y, KALOOP M R, ELNABWY M T, et al. A Recurrent-Cascade-Neural network-nonlinear autoregressive networks with exogenous inputs (NARX) approach for long-term time-series prediction of wave height based on wave characteristics measurements[J]. Ocean Engineering, 2021, 240: 109958. |
[66] | FAN S T, XIAO N H, DONG S. A novel model to predict significant wave height based on long short-term memory network[J]. Ocean Engineering, 2020, 205: 107298. |
[67] | JÖRGES C, BERKENBRINK C, STUMPE B. Prediction and reconstruction of ocean wave heights based on bathymetric data using LSTM neural networks[J]. Ocean Engineering, 2021, 232: 109046. |
[68] | ZHOU S Y, BETHEL B J, SUN W J, et al. Improving significant wave height forecasts using a joint empirical mode decomposition—long short-term memory network[J]. Journal of Marine Science and Engineering, 2021, 9(7): 744. |
[69] | ALI M, PRASAD R, XIANG Y, et al. Advanced extreme learning machines vs. deep learning models for peak wave energy period forecasting: A case study in Queensland, Australia[J]. Renewable Energy, 2021, 177: 1031-1044. |
[70] | CHEN D L, LIU F, ZHANG Z Q, et al. Significant wave height prediction based on Wavelet Graph Neural Network[C]//2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI). Qingdao, China. IEEE, 2021: 80-85. |
[71] | ZHOU S Y, XIE W H, LU Y X, et al. ConvLSTM-based wave forecasts in the South and East China Seas[J]. Frontiers in Marine Science, 2021, 8: 680079. |
[72] | BAI G, WANG Z F, ZHU X Y, et al. Development of a 2-D deep learning regional wave field forecast model based on convolutional neural network and the application in South China Sea[J]. Applied Ocean Research, 2022, 118: 103012. |
[73] | HOLTHUIJSEN L H. Waves in oceanic and coastal waters[M]. Cambridge, UK: Cambridge University Press, 2007. |
[74] | 张新宇, 石爱国, 周波, 等. 一种海浪谱预报的新模式[J]. 中国航海, 2015, 38(2):118-121. |
ZHANG X Y, SHI A G, ZHOU B, et al. A new method to predict ocean wave spectra[J]. Navigation of China, 2015, 38(2): 118-121. | |
[75] | MOONEYHAM J, CROSBY S C, KUMAR N, et al. SWRL net: A spectral, residual deep learning model for improving short-term wave forecasts[J]. Weather and Forecasting, 2020, 35(6): 2445-2460. |
[76] | SONG Y H, JIANG H Y. A deep learning-based approach for empirical modeling of single-point wave spectra in open oceans[J]. Journal of Physical Oceanography, 2023, 53(9): 2089-2103. |
[1] | LIU Yang, LI Sanzhong, ZOU Zhuoyan, SUO Yanhui, SUN Yi. High-precision seafloor topographic mapping based on data-knowledge-driven: An example from the South China Sea [J]. Journal of Marine Sciences, 2024, 42(3): 142-152. |
[2] | JIN Yang, HAN Lei, JIN Meibing, DONG Changming. Intelligent wave forecasting and evaluation along the southeast coast of China based on ConvLSTM method [J]. Journal of Marine Sciences, 2024, 42(3): 88-98. |
[3] | LI Yan, CHEN Yining, WU Xiangbai. Complex parameterization for land-ocean interface: A perspective [J]. Journal of Marine Sciences, 2022, 40(3): 3-8. |
[4] | YANG Yun, WANG Hui-qun, GUAN Wei-bing, CAO Zhen-yi, CHEN Qi. Study on characteristics and numerical simulation of storm surge around the Zhoushan Island [J]. Journal of Marine Sciences, 2015, 33(3): 7-16. |
[5] | WANG Wei-yuan, HE Qian-qian, YANG Juan. Numerical simulation research of wave with a return period of 50 years in the Hangzhou Bay [J]. Journal of Marine Sciences, 2013, 31(4): 44-48. |
[6] | WU Wei, FU Ci-fu, YU Fu-jiang, LIU Qiu-xing. Numerical simulation of the influence of Wenzhou coastal dike on storm surge inundation [J]. Journal of Marine Sciences, 2012, 30(2): 36-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||