Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (3): 64-74.DOI: 10.3969/j.issn.1001-909X.2024.03.005
Previous Articles Next Articles
DI Ya’nan1,2(), ZHAO Ruoxuan2, XU Jianzhou1,2
Received:
2023-12-30
Revised:
2024-07-12
Online:
2024-09-15
Published:
2024-11-25
CLC Number:
DI Ya’nan, ZHAO Ruoxuan, XU Jianzhou. Deep learning-based histopathological analysis and its potential application in marine monitoring: A review and case study[J]. Journal of Marine Sciences, 2024, 42(3): 64-74.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.03.005
评价指标 | 模型架构 | 骨架网络 | ||||
---|---|---|---|---|---|---|
UNet | LinkNet | FPN | VGG16-UNet | ResNet34-UNet | EfficientNetB0-UNet | |
准确率 | 0.898 5±0.086 25 | 0.838 4±0.041 68 | 0.744 9±0.116 4 | 0.894 4±0.083 56 | 0.947 8±0.061 92 | 0.914 4±0.093 33 |
IoU | 0.745 5±0.097 53 | 0.718 9±0.077 96 | 0.713 3±0.117 9 | 0.787 5±0.099 64 | 0.852 6±0.113 3 | 0.793 3±0.120 2 |
Dice系数 | 0.850 7±0.065 17 | 0.808 8±0.090 58 | 0.827 4±0.079 94 | 0.877 7±0.064 56 | 0.915 9±0.078 76 | 0.885 8±0.081 20 |
HD95 | 23.24±24.68 | 25.74±23.54 | 49.78±35.62 | 18.66±27.22 | 10.92±27.84 | 21.00±34.67 |
Tab.1 Performance evaluation of image segmentation based on different models
评价指标 | 模型架构 | 骨架网络 | ||||
---|---|---|---|---|---|---|
UNet | LinkNet | FPN | VGG16-UNet | ResNet34-UNet | EfficientNetB0-UNet | |
准确率 | 0.898 5±0.086 25 | 0.838 4±0.041 68 | 0.744 9±0.116 4 | 0.894 4±0.083 56 | 0.947 8±0.061 92 | 0.914 4±0.093 33 |
IoU | 0.745 5±0.097 53 | 0.718 9±0.077 96 | 0.713 3±0.117 9 | 0.787 5±0.099 64 | 0.852 6±0.113 3 | 0.793 3±0.120 2 |
Dice系数 | 0.850 7±0.065 17 | 0.808 8±0.090 58 | 0.827 4±0.079 94 | 0.877 7±0.064 56 | 0.915 9±0.078 76 | 0.885 8±0.081 20 |
HD95 | 23.24±24.68 | 25.74±23.54 | 49.78±35.62 | 18.66±27.22 | 10.92±27.84 | 21.00±34.67 |
[1] | BOESCH D F, PAUL J F. An overview of coastal environ-mental health indicators[J]. Human and Ecological Risk Assessment: An International Journal, 2001, 7(5): 1409-1417. |
[2] | GODSON P S, VINCENT S G T, KRISHNAKUMAR S. Ecology and biodiversity of benthos[M]. [S.l.]: Elsevier, 2022. |
[3] | 郭海峡, 蔡榕硕, 谭红建. 长江口及邻近海域浮游植物生态系统气候变化综合风险评估[J]. 应用海洋学学报, 2023, 42(4):549-558. |
GUO H X, CAI R S, TAN H J. Assessment of climate change on comprehensive risks of phytoplankton ecosystem in Changjiang Estuary and adjacent waters[J]. Journal of Applied Oceanography, 2023, 42(4): 549-558. | |
[4] | YUAN S Y, LI Y, BAO F W, et al. Marine environmental monitoring with unmanned vehicle platforms: Present applications and future prospects[J]. Science of the Total Environment, 2023, 858: 159741. |
[5] | CHEN S Y, QU M J, DING J W, et al. BaP-metals co-exposure induced tissue-specific antioxidant defense in marine mussels Mytilus coruscus[J]. Chemosphere, 2018, 205: 286-296. |
[6] | GU Y Y, WEI Q, WANG L Y, et al. A comprehensive study of the effects of phthalates on marine mussels: Bioconcentration, enzymatic activities and metabolomics[J]. Marine Pollution Bulletin, 2021, 168: 112393. |
[7] | VON MOOS N, BURKHARDT-HOLM P, KÖHLER A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure[J]. Environmental Science & Technology, 2012, 46(20): 11327-11335. |
[8] | REY-CAMPOS M, MOREIRA R, VALENZUELA-MUÑOZ V, et al. High individual variability in the transcriptomic response of Mediterranean mussels to Vibrio reveals the involvement of myticins in tissue injury[J]. Scientific Reports, 2019, 9:3569. |
[9] | ROCHA T L, SABóIA-MORAIS S M T, BEBIANNO M J. Histopathological assessment and inflammatory response in the digestive gland of marine mussel Mytilus galloprovincialis exposed to cadmium-based quantum dots[J]. Aquatic Toxicology, 2016, 177: 306-315. |
[10] | BRABY C E, SOMERO G N. Following the heart: Tem-perature and salinity effects on heart rate in native and invasive species of blue mussels (genus Mytilus)[J]. Journal of Experimental Biology, 2006, 209: 2554-2566. |
[11] | SARÀ G, DE PIRRO M. Heart beat rate adaptations to varying salinity of two intertidal Mediterranean bivalves: The invasive Brachidontes pharaonis and the native Mytilaster minimus[J]. Italian Journal of Zoology, 2011, 78(2): 193-197. |
[12] | ANANDRAJ A, MARSHALL D J, GREGORY M A, et al. Metal accumulation, filtration and O2 uptake rates in the mussel Perna perna (Mollusca: Bivalvia) exposed to Hg2+, Cu2+ and Zn2+[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2002, 132(3): 355-363. |
[13] | SOLÉ M, PORTE C, BARCELO D, et al. Bivalves residue analysis for the assessment of coastal pollution in the Ebro Delta (NW Mediterranean)[J]. Marine Pollution Bulletin, 2000, 40(9): 746-753. |
[14] | WARD J E, ZHAO S, HOLOHAN B A, et al. Selective ingestion and egestion of plastic particles by the blue mussel (Mytilus edulis) and eastern oyster (Crassostrea virginica): Implications for using bivalves as bioindicators of micro-plastic pollution[J]. Environmental Science & Technology, 2019, 53(15): 8776-8784. |
[15] | SALEM AL-HOWITI N, OUANES BEN OTHMEN Z, BEN OTHMANE A, et al. Use of Tridacna maxima, a bivalve in the biomonitoring of the Saudi Arabian Red Sea coast[J]. Marine Pollution Bulletin, 2020, 150: 110766. |
[16] | DITRIA E M, BUELOW C A, GONZALEZ-RIVERO M, et al. Artificial intelligence and automated monitoring for assisting conservation of marine ecosystems: A perspective[J]. Frontiers in Marine Science, 2022, 9: 918104. |
[17] | SONG T, PANG C, HOU B Y, et al. A review of artificial intelligence in marine science[J]. Frontiers in Earth Science, 2023, 11: 1090185. |
[18] | GONZÁLEZ-RIVERO M, BEIJBOM O, RODRIGUEZ-RAMIREZ A, et al. Monitoring of coral reefs using artificial intelligence: A feasible and cost-effective approach[J]. Remote Sensing, 2020, 12(3): 489. |
[19] |
SHEN D G, WU G R, SUK H I. Deep learning in medical image analysis[J]. Annual Review of Biomedical Engineering, 2017, 19: 221-248.
DOI PMID |
[20] | FUCHS T J, BUHMANN J M. Computational pathology: Challenges and promises for tissue analysis[J]. Compu-terized Medical Imaging and Graphics, 2011, 35(7/8): 515-530. |
[21] |
PROCTOR I E. What is histopathology and how to get the most out of your histopathologist[J]. British Journal of Hospital Medicine, 2015, 76(5): 66-68.
DOI PMID |
[22] | ADYANTHAYA S, JOSE M. Quality and safety aspects in histopathology laboratory[J]. Journal of Oral and Maxillo-facial Pathology, 2013, 17(3): 402-407. |
[23] | FANTA E, RIOS F S, ROMÃO S, et al. Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food[J]. Ecotoxi-cology and Environmental Safety, 2003, 54(2): 119-130. |
[24] | HSIEH S L, HSIEH S, XU R Q, et al. Toxicological effects of polystyrene nanoplastics on marine organisms[J]. Envi-ronmental Technology & Innovation, 2023, 30: 103073. |
[25] | GEYER H, SHEEHAN P, KOTZIAS D, et al. Prediction of ecotoxicological behaviour of chemicals: Relationship between physico-chemical properties and bioaccumulation of organic chemicals in the mussel Mytilus edulis[J]. Chemo-sphere, 1982, 11(11): 1121-1134. |
[26] |
LI J N, LUSHER A L, ROTCHELL J M, et al. Using mussel as a global bioindicator of coastal microplastic pollution[J]. Environmental Pollution, 2019, 244: 522-533.
DOI PMID |
[27] |
SMITH J R, FONG P, AMBROSE R F. Dramatic declines in mussel bed community diversity: Response to climate change?[J]. Ecology, 2006, 87(5): 1153-1161.
PMID |
[28] | 张翼飞, 曲梦杰, 丁家玮, 等. 多环芳烃对海洋贝类多生物水平毒性效应的研究进展[J]. 生态毒理学报, 2019, 14(1):18-29. |
ZHANG Y F, QU M J, DING J W, et al. Ecotoxicology: A review of multi-toxicity in marine bivalve induced by polycyclic aromatic hydrocarbons[J]. Asian Journal of Ecotoxicology, 2019, 14(1): 18-29. | |
[29] | AARAB N, MINIER C, LEMAIRE S, et al. Biochemical and histological responses in mussel (Mytilus edulis) exposed to North Sea oil and to a mixture of North Sea oil and alkylphenols[J]. Marine Environmental Research, 2004, 58(2/3/4/5): 437-441. |
[30] | 孟祥敬, 李斐, 王晓晴, 等. 石墨烯联合磷酸三苯酯(TPP)胁迫紫贻贝(Mytilus galloprovincialis)的生理生化响应[J]. 科学通报, 2020, 65(16):1599-1609. |
MENG X J, LI F, WANG X Q, et al. Physiological and biochemistry responses of graphene combined with triphenyl phosphate (TPP) to Mytilus galloprovincialis[J]. Chinese Science Bulletin, 2020, 65(16): 1599-1609. | |
[31] |
MATOZZO V, ERCOLINI C, SERRACCA L, et al. Assessing the health status of farmed mussels (Mytilus galloprovincialis) through histological, microbiological and biomarker analyses[J]. Journal of Invertebrate Pathology, 2018, 153: 165-179.
DOI PMID |
[32] | WOLF J C, MAACK G. Evaluating the credibility of histo-pathology data in environmental endocrine toxicity studies[J]. Environmental Toxicology and Chemistry, 2017, 36(3): 601-611. |
[33] | BASTI L, ENDO M, SEGAWA S, et al. Prevalence and intensity of pathologies induced by the toxic dinoflagellate, Heterocapsa circularisquama, in the Mediterranean mussel, Mytilus galloprovincialis[J]. Aquatic Toxicology, 2015, 163: 37-50. |
[34] |
CUEVAS N, ZORITA I, COSTA P M, et al. Development of histopathological indices in the digestive gland and gonad of mussels: Integration with contamination levels and effects of confounding factors[J]. Aquatic Toxicology, 2015, 162: 152-164.
DOI PMID |
[35] | COPPOLA F, BESSA A, HENRIQUES B, et al. Oxidative stress, metabolic and histopathological alterations in mussels exposed to remediated seawater by GO-PEI after contamination with mercury[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2020, 243: 110674. |
[36] | BERNET D, SCHMIDT H, MEIER W, et al. Histopathology in fish: Proposal for a protocol to assess aquatic pollution[J]. Journal of Fish Diseases, 1999, 22(1): 25-34. |
[37] |
CARELLA F, FEIST S W, BIGNELL J P, et al. Comparative pathology in bivalves: Aetiological agents and disease processes[J]. Journal of Invertebrate Pathology, 2015, 131: 107-120.
DOI PMID |
[38] | 李太伟. 海洋贻贝组织病理指标的深入挖掘与应用[D]. 杭州: 浙江大学, 2021. |
LI T W. Deep investigation and application of histopatho-logical indices in marine mussels[D]. Hangzhou: Zhejiang University, 2021. | |
[39] | OECD. Test No. 487: In vitro mammalian cell micronucleus test[M]. 2023. |
[40] | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444. |
[41] | SARKER I H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions[J]. SN Computer Science, 2021, 2(6): 420. |
[42] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
[43] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA, 2016. |
[44] | BI J R, ZHU Z L, MENG Q L. Transformer in computer vision[C]// 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). Fuzhou, China, 2021. |
[45] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the International Conference on Neural Information Processing Systems (NIPS), Long Beach, USA, 2017. |
[46] | HUSSAIN M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677. |
[47] | CIOCAN C M, CUBERO-LEON E, PUINEAN A M, et al. Effects of estrogen exposure in mussels, Mytilus edulis, at different stages of gametogenesis[J]. Environmental Pollution, 2010, 158(9): 2977-2984. |
[48] | LEISER F, RANK S, SCHMIDT-KRAEPELIN M, et al. Medical informed machine learning: A scoping review and future research directions[J]. Artificial Intelligence in Medicine, 2023, 145: 102676. |
[49] | YEARLEY A G, GOEDMAKERS C M W, PANAHI A, et al. FDA-approved machine learning algorithms in neuroradiology: A systematic review of the current evidence for approval[J]. Artificial Intelligence in Medicine, 2023, 143: 102607. |
[50] | IIZUKA O, KANAVATI F, KATO K, et al. Deep learning models for histopathological classification of gastric and colonic epithelial tumours[J]. Scientific Reports, 2020, 10(1): 1504. |
[51] |
GERTYCH A, SWIDERSKA-CHADAJ Z, MA Z X, et al. Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides[J]. Scientific Reports, 2019, 9: 1483.
DOI PMID |
[52] |
FENG Y Q, ZHANG L, MO J. Deep manifold preserving autoencoder for classifying breast cancer histopathological images[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17(1): 91-101.
DOI PMID |
[53] |
LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42: 60-88.
DOI PMID |
[54] | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention. Munich, Germany, 2015. |
[55] | ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: A nested U-net architecture for medical image segmentation[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop. Granada, Spain, 2018. |
[56] |
GRAHAM S, CHEN H, GAMPER J, et al. MILD-Net: Minimal information loss dilated network for gland instance segmentation in colon histology images[J]. Medical Image Analysis, 2019, 52: 199-211.
DOI PMID |
[57] |
HERMSEN M, DE BEL T, DEN BOER M, et al. Deep learning-based histopathologic assessment of kidney tissue[J]. Journal of the American Society of Nephrology, 2019, 30(10): 1968-1979.
DOI PMID |
[58] | SONG Z G, ZOU S M, ZHOU W X, et al. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning[J]. Nature Commu-nications, 2020, 11: 4294. |
[59] | GRAHAM S, VU Q D, JAHANIFAR M, et al. One model is all you need: Multi-task learning enables simultaneous histology image segmentation and classification[J]. Medical Image Analysis, 2023, 83: 102685. |
[60] | RIJTHOVEN M V, SWIDERSKA-CHADAJ Z, SEELIGER K, et al. You only look on lymphocytes once[C]// The Inter-national Conference on Medical Imaging with Deep Learning, Amsterdam, Netherlands, 2018. |
[61] | RONG R C, SHENG H, JIN K W, et al. A deep learning approach for histology-based nucleus segmentation and tumor microenvironment characterization[J]. Modern Pathology, 2023, 36(8): 100196. |
[62] | CRUZ-ROA A, GILMORE H, BASAVANHALLY A, et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: A deep learning approach for quantifying tumor extent[J]. Scientific Reports, 2017, 7: 46450. |
[63] |
KARIMI D, NIR G, FAZLI L, et al. Deep learning-based gleason grading of prostate cancer from histopathology images-role of multiscale decision aggregation and data augmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(5): 1413-1426.
DOI PMID |
[64] |
SIRINUKUNWATTANA K, PLUIM J P W, CHEN H, et al. Gland segmentation in colon histology images: The glas challenge contest[J]. Medical Image Analysis, 2017, 35: 489-502.
DOI PMID |
[65] |
VAN DER OOST R, BEYER J, VERMEULEN N P E. Fish bioaccumulation and biomarkers in environmental risk assessment: A review[J]. Environmental Toxicology and Pharmacology, 2003, 13(2): 57-149.
DOI PMID |
[66] | YOUNIS E, ABDELWARITH D A, AL-ASGAH N, et al. Histological changes in the liver and intestine of Nile tilapia, Oreochromis niloticus, exposed to sublethal concentrations of cadmium[J]. Pakistan Journal of Zoology, 2013, 45: 833-841. |
[67] | QU M J, XU J Z, YANG Y L, et al. Assessment of sulfamethoxazole toxicity to marine mussels (Mytilus galloprovincialis): Combine p38-MAPK signaling pathway modulation with histopathological alterations[J]. Ecoto-xicology and Environmental Safety, 2023, 249: 114365. |
[68] | QU M J, DING J W, WANG Y, et al. Genetic impacts induced by BaP and Pb in Mytilus coruscus: Can RAPD be a validated tool in genotoxicity evaluation both in vivo and in vitro?[J]. Ecotoxicology and Environmental Safety, 2019, 169: 529-538. |
[69] | BINELLI A, RIVA C, COGNI D, et al. Assessment of the genotoxic potential of benzo(α)pyrene and pp’-dichlorodi-phenyldichloroethylene in Zebra mussel (Dreissena polymor-pha)[J]. Mutation Research, 2008, 649(1/2):135-145. |
[70] | DI Y N, SCHROEDER D C, HIGHFIELD A, et al. Tissue-specific expression of p53 and ras genes in response to the environmental genotoxicant benzo(α)pyrene in marine mussels[J]. Environmental Science & Technology, 2011, 45(20): 8974-8981. |
[1] | SHAO Zhiyuan, ZHAO Jiechen, XIE Longxiang, MU Fangru, XIAO Jing, LIU Minjun, CHEN Xuejing. Classification accuracy and influencing factors of Arctic sea ice based on deep learning and Sentinel-1 satellite imagery [J]. Journal of Marine Sciences, 2024, 42(3): 119-130. |
[2] | DONG Changming, WANG Ziyun, XIE Huarong, XU Guangjun, HAN Guoqing, ZHOU Shuyi, XIE Wenhong, SHEN Xiangyu, HAN Lei. Prospect of artificial intelligence in oceanography [J]. Journal of Marine Sciences, 2024, 42(3): 2-27. |
[3] | LU Yuting, GUO Wenkang, DING Jun, WANG Linfeng, LI Xiaohui, WANG Jiuke. Progress and challenges of artificial intelligence wave forecasting [J]. Journal of Marine Sciences, 2024, 42(3): 28-37. |
[4] | XU Guangjun, SHI Yucheng, YU Yang, XIE Huarong, XIE Wenhong, LIU Jingyuan, LIN Xiayan, LIU Yu, DONG Changming. Recent developments in AI-based oceanic eddy identification [J]. Journal of Marine Sciences, 2024, 42(3): 38-50. |
[5] | JIN Yang, HAN Lei, JIN Meibing, DONG Changming. Intelligent wave forecasting and evaluation along the southeast coast of China based on ConvLSTM method [J]. Journal of Marine Sciences, 2024, 42(3): 88-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||