Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (4): 12-20.DOI: 10.3969/j.issn.1001-909X.2024.04.002
Previous Articles Next Articles
CHEN Cong1,2(), XU Chuyue1,2, QIN Jianhuang1,2,3,*(
), KANG Yanyan1,2, WANG Guifen1,2
Received:
2024-07-09
Revised:
2024-09-25
Online:
2024-12-15
Published:
2025-02-08
Contact:
QIN Jianhuang
CLC Number:
CHEN Cong, XU Chuyue, QIN Jianhuang, KANG Yanyan, WANG Guifen. The spatial and temporal differences of upper ocean in tropical Pacific during the “triple-dip” La Niña of 2020-2023[J]. Journal of Marine Sciences, 2024, 42(4): 12-20.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.04.002
Fig.4 The subsurface ocean temperature anomaly and the 20 ℃ isotherm depth between 2°S and 2°N over the tropical Pacific (The purple line represents the mean value of 20 ℃ isotherm depth in winter of each year and the black thick line indicats the climatological state of the 20 ℃ isotherm depth.)
Fig.5 The averaged 20 ℃ isotherm depth anomaly between 2°N and 2°S over the tropical Pacific from January 2020 to May 2023 (Positive value indicates deepening thermocline, while negative value indicates shallowing thermocline.)
[1] | ZHENG F, FANG X H, ZHU J, et al. Modulation of Bjerknes feedback on the decadal variations in ENSO predictability[J]. Geophysical Research Letters, 2016, 43(24): 12560-12568. |
[2] | CHIKAMOTO Y, TANIMOTO Y. Air-sea humidity effects on the generation of tropical Atlantic SST anomalies during the ENSO events[J]. Geophysical Research Letters, 2006, 33(19): L19702. |
[3] |
JOHNSON S J, STOCKDALE T N, FERRANTI L, et al. SEAS5: The new ECMWF seasonal forecast system[J]. Geoscientific Model Development, 2019, 12(3): 1087-1117.
DOI |
[4] | MACLACHLAN C, ARRIBAS A, PETERSON K A, et al. Global seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(689): 1072-1084. |
[5] | O’LENIC E A, UNGER D A, HALPERT M S, et al. Developments in operational long-range climate prediction at CPC[J]. Weather and Forecasting, 2008, 23(3): 496-515. |
[6] | MCPHADEN M, SANTOSO A, CAI W. El Niño Southern Oscillation in a changing climate[M]. [S.l.]: Wiley, 2020. |
[7] | TIMMERMANN A, AN S I, KUG J S, et al. El Niño-Southern Oscillation complexity[J]. Nature, 2018, 559: 535-545. |
[8] | DINEZIO P N, DESER C, OKUMURA Y, et al. Predictability of 2-year La Niña events in a coupled general circulation model[J]. Climate Dynamics, 2017, 49(11): 4237-4261. |
[9] | HU Z Z, KUMAR A, XUE Y, et al. Why were some La Niñas followed by another La Niña?[J]. Climate Dynamics, 2014, 42: 1029-1042. |
[10] | MIN S K, CAI W J, WHETTON P. Influence of climate variability on seasonal extremes over Australia[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(2): 643-654. |
[11] | LUO J J, LIU G Q, HENDON H, et al. Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010-2012[J]. Scientific Reports, 2017, 7: 2276. |
[12] | KOSAKA Y, XIE S P. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 2013, 501: 403-407. |
[13] | ENGLAND M H, MCGREGOR S, SPENCE P, et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus[J]. Nature Climate Change, 2014, 4: 222-227. |
[14] | WATANABE M, SHIOGAMA H, TATEBE H, et al. Contribution of natural decadal variability to global warming acceleration and hiatus[J]. Nature Climate Change, 2014, 4: 893-897. |
[15] | WANG C Z, DESER C, YU J Y, et al. El Niño and Southern Oscillation (ENSO): A review[M]//GLYNN P W, MANZELLO D P, ENOCHS I C. Coral reefs of the eastern tropical Pacific. Dordrecht: Springer, 2017: 85-106. |
[16] | GODDARD L, PHILANDER S G. The energetics of El Niño and La Niña[J]. Climate, 2000, 13, 1496-1516. |
[17] | WYRTKI K. El Niño—The dynamic response of the equatorial Pacific ocean to atmospheric forcing[J]. Journal of Physical Oceanography, 1975, 5(4): 572-584. |
[18] | WYRTKI K. Water displacements in the Pacific and the genesis of El Niño cycles[J]. Journal of Geophysical Research: Oceans, 1985, 90(C4): 7129-7132. |
[19] | JIN F F. An equatorial ocean recharge paradigm for ENSO: part I: Conceptual model[J]. Journal of the Atmospheric Sciences, 1997, 54(7): 811-829. |
[20] | JIN F F. An equatorial ocean recharge paradigm for ENSO: part II: A stripped-down coupled model[J]. Journal of the Atmospheric Sciences, 1997, 54(7): 830-847. |
[21] | ZHANG R H, GAO C, FENG L C. Recent ENSO evolution and its real-time prediction challenges[J]. National Science Review, 2022, 9(4): nwac052. |
[22] | CAI W J, WANG G J, SANTOSO A, et al. Increased frequency of extreme La Niña events under greenhouse warming[J]. Nature Climate Change, 2015, 5: 132-137. |
[23] | GAO Y P, FAN K, XU Z Q. Causes of the unprecedented month-to-month persistent extreme heat event over South China in early summer 2020: Role of sea surface tempera-ture anomalies in the tropical indo-pacific region[J]. Journal of Geophysical Research: Atmospheres, 2023, 128: e2022JD038422. |
[24] | 何慧根, 张驰, 吴遥, 等. 重庆夏季高温干旱特征及其对拉尼娜事件的响应[J]. 干旱气象, 2023, 41(6):873-883. |
HE H G, ZHANG C, WU Y, et al. Characteristics of high temperature and drought during summer in Chongqing and its response to La Niña event[J]. Journal of Arid Meteorology, 2023, 41(6): 873-883. | |
[25] | ZHENG F, YUAN Y, DING Y H, et al. The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm Arctic[J]. Advances in Atmos-pheric Sciences, 2022, 39(4): 546-552. |
[26] | BIAN Y J, SUN P, ZHANG Q, et al. Amplification of non-stationary drought to heatwave duration and intensity in eastern China: Spatiotemporal pattern and causes[J]. Journal of Hydrology, 2022, 612: 128154. |
[27] | ZHENG F, LIU J P, FANG X H, et al. The predictability of ocean environments that contributed to the 2020/21 extreme cold events in China: 2020/21 La Niña and 2020 Arctic sea ice loss[J]. Advances in Atmospheric Sciences, 2022, 39(4): 658-672. |
[28] | 任宏利, 王润, 翟盘茂, 等. 超强厄尔尼诺事件海洋学特征分析与预测回顾[J]. 气象学报, 2017, 75(1):1-18. |
REN H L, WANG R, ZHAI P M, et al. Upper-ocean dynamical features and prediction of the super El Niño in 2015/2016: A comparison with 1982/1983 and 1997/1998[J]. Acta Meteorologica Sinica, 2017, 75(1):1-18. | |
[29] | JEONG H, PARK H S, CHOWDARY J S, et al. Triple-dip La Niña contributes to Pakistan flooding and Southern China drought in summer 2022[J]. Bulletin of the American Meteorological Society, 2023, 104(9): 1570-1586. |
[30] | WANG Z Q, LUO H L, YANG S. Different mechanisms for the extremely hot central-eastern China in July-August 2022 from a Eurasian large-scale circulation perspective[J]. Environmental Research Letters, 2023, 18(2): 024023. |
[31] | RIPPLE W J, WOLF C, GREGG J W, et al. World scientists’ warning of a climate emergency 2022[J]. BioScience, 2022, 72(12): 1149-1155. |
[32] | 郑飞, 张小娟, 曹庭伟. 西太平洋暖池海洋热浪在2020—2022三年拉尼娜事件爆发背景下的演变特征、爆发机制及其影响研究[J]. 大气科学, 2024, 48(1):376-390. |
ZHENG F, ZHANG X J, CAO T W. Analysis of evolution characteristics, physical mechanisms, and impacts of marine heat waves in the Western Pacific warm pool under the background of triple-year La Niña from 2020 to 2022[J]. Chinese Journal of Atmospheric Sciences, 2024, 48(1): 376-390. | |
[33] | FANG X H, ZHENG F, LI K X, et al. Will the historic southeasterly wind over the equatorial Pacific in March 2022 trigger a third-year La Niña event?[J]. Advances in Atmospheric Sciences, 2023, 40(1): 6-13. |
[34] | LI X F, HU Z Z, TSENG Y H, et al. A historical perspective of the La Niña event in 2020/2021[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(7): e2021JD035546. |
[35] | ZHENG F, FENG L S, ZHU J. An incursion of off-equatorial subsurface cold water and its role in triggering the “double dip” La Niña event of 2011[J]. Advance in Atmospheric Sciences, 2015, 32: 731-742. |
[36] | JIANG S, ZHU C W, HU Z Z, et al. Triple-dip La Niña in 2020-23: Understanding the role of the annual cycle in tropical Pacific SST[J]. Environmental Research Letters, 2023, 18(8): 084002. |
[37] | MASUDA S, AWAJI T, TOYODA T, et al. Temporal evolution of the equatorial thermocline associated with the 1991-2006 ENSO[J]. Journal of Geophysical Research: Oceans, 2009, 114(C3): C03015. |
[38] | WANG B, WU R G, LUKAS R. Roles of the western North Pacific wind variation in thermocline adjustment and ENSO phase transition[J]. Journal of the Meteorological Society of Japan Ser II, 1999, 77(1): 1-16. |
[39] | LI M T, CAO Z Y, GORDON A L, et al. Roles of the Indo-Pacific subsurface Kelvin waves and volume transport in prolonging the triple-dip 2020-2023 La Niña[J]. Environmental Research Letters, 2023, 18: 104043. |
[40] | KIM K Y, KIM Y Y. Mechanism of Kelvin and Rossby waves during ENSO events[J]. Meteorology and Atmospheric Physics, 2002, 81(3): 169-189. |
[41] | MEINEN C S, MCPHADEN M J. Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña[J]. Journal of Climate, 2000, 13(20): 3551-3559. |
[42] | GENG T, JIA F, CAI W J, et al. Increased occurrences of consecutive La Niña events under global warming[J]. Nature, 2023, 619: 774-781. |
[43] | CHEN M N, GAO C, ZHANG R H. How the central-western equatorial Pacific easterly wind in early 2022 affects the third-year La Niña occurrence[J]. Climate Dynamics, 2024, 62(5): 3047-3066. |
[44] | GAO C, ZHOU L, ZHANG R H. A transformer-based deep learning model for successful predictions of the 2021 second-year La Niña condition[J]. Geophysical Research Letters, 2023, 50: e2023GL104034. |
[45] | 高川, 陈茂楠, 周路, 等. 2020-2021年热带太平洋持续性双拉尼娜事件的演变[J]. 中国科学:地球科学, 2022, 52(12): 2353-2372. |
GAO C, CHEN M N, ZHOU L, et al. The 2020-2021 prolonged La Niña evolution in the tropical Pacific[J]. Science China Earth Sciences, 2022, 65(12): 2248-2266. | |
[46] | HASAN N A, CHIKAMOTO Y, MCPHADEN M J. The influence of tropical basin interactions on the 2020-2022 double-dip La Niña[J]. Frontiers in Climate, 2022, 4: 1001174. |
[1] | ZHENG Mengke, FANG Wei, ZHANG Xiaozhi. Review of application of deep learning in Indian Ocean Dipole prediction [J]. Journal of Marine Sciences, 2024, 42(3): 51-63. |
[2] | SU Han, CHUANG Ziwei, ZHANG Chunling. Application analysis of GDCSM-Argo in evaluating global ocean heat content [J]. Journal of Marine Sciences, 2024, 42(2): 40-54. |
[3] | XI Jing-yuan, ZHOU Lei, JIANG Liang-hong. Characteristics of intraseasonal air-sea interactions over global oceans [J]. Journal of Marine Sciences, 2014, 32(3): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||