Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (4): 43-57.DOI: 10.3969/j.issn.1001-909X.2024.04.005
Previous Articles Next Articles
TAN Yiyang1,2,3(), BAI Yan1,2,3,*(
), LI Teng2,3, ZHENG Xinyu1,2,3, ZHANG Yinxue4, ZHANG Yifan1,2,3
Received:
2024-01-12
Revised:
2024-02-01
Online:
2024-12-15
Published:
2025-02-08
Contact:
BAI Yan
CLC Number:
TAN Yiyang, BAI Yan, LI Teng, ZHENG Xinyu, ZHANG Yinxue, ZHANG Yifan. Antarctic krill habitat suitability modeling based on timing parameters and long-term change analysis: A case study in the Cosmonauts Sea and D’Urville Sea[J]. Journal of Marine Sciences, 2024, 42(4): 43-57.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.04.005
Fig.1 Location of the study area, Antarctic krill presence records and ocean currents in the Southern Ocean (Ocean currents are redrawn from reference [28].)
环境参数 | 数据集 | 时间 分辨率 | 空间 分辨率 |
---|---|---|---|
海面温度(SST) | AVHRR OI | 日均 | 0.25° |
海冰密集度(SIC) | Sea Ice Index (G02135) | 日均 | 25 km |
海面叶绿素质量浓度(CHL) | OC-CCI | 8 d | 4 km |
混合层深度(MLD) | C-GLORS | 日均 | 0.25° |
Tab.1 Parameters information of satellite data and reanalysis data in this study
环境参数 | 数据集 | 时间 分辨率 | 空间 分辨率 |
---|---|---|---|
海面温度(SST) | AVHRR OI | 日均 | 0.25° |
海冰密集度(SIC) | Sea Ice Index (G02135) | 日均 | 25 km |
海面叶绿素质量浓度(CHL) | OC-CCI | 8 d | 4 km |
混合层深度(MLD) | C-GLORS | 日均 | 0.25° |
Fig.3 Definition schematic diagram of algal bloom (a) and sea ice (b) timing parameters (Sequence numbers in the diagram correspond to the equation numbers in the main text.)
参数类型 | 定义 | 环境参数 | 贡献率百分比/% | |
---|---|---|---|---|
宇航员海 | 迪尔维尔海 | |||
常规单一时刻 环境参数 | 混合层深度(MLD) | d/m | 11.5 | 16.5 |
海面温度(SST) | θ/℃ | 1.9 | 8.3 | |
叶绿素质量浓度(CHL) | ρ/(mg·m-3) | 7.2 | 15.3 | |
海冰密集度(SIC) | C/‰ | 0.0 | 2.0 | |
藻华与海冰 时序特征参数 | 无冰期持续时间 | tice-free/d | 12.4 | 7.6 |
藻华持续时间 | tBloomDur/d | 0.2 | 0.2 | |
藻华期间累积CHL | ρBloomInteg/(mg·m-3) | 12.4 | 0.6 | |
藻华期间CHL峰值 | ρBloomPeak/(mg·m-3) | 37.5 | 7.9 | |
南极磷虾出现与 时序特征参数时间差 | 南极磷虾出现时间距离海冰消退时间之间的天数 | tDATOR/d | 1.5 | 9.3 |
南极磷虾出现时间距离海冰生成时间之间的天数 | tDBTOA/d | 1.7 | 2.7 | |
南极磷虾出现时间距离藻华起始时间之间的天数 | tDABloomInit/d | 9.6 | 1.5 | |
南极磷虾出现时间距离藻华结束时间之间的天数 | tDBBloomTerm/d | 3.1 | 0.5 | |
南极磷虾出现时间距离藻华期间CHL达峰时间之间的天数 | tDABloomPeak/d | 1.1 | 27.7 |
Tab.2 Input parameters contribution in Maxent model for the Cosmonauts Sea and the D’Urville Sea
参数类型 | 定义 | 环境参数 | 贡献率百分比/% | |
---|---|---|---|---|
宇航员海 | 迪尔维尔海 | |||
常规单一时刻 环境参数 | 混合层深度(MLD) | d/m | 11.5 | 16.5 |
海面温度(SST) | θ/℃ | 1.9 | 8.3 | |
叶绿素质量浓度(CHL) | ρ/(mg·m-3) | 7.2 | 15.3 | |
海冰密集度(SIC) | C/‰ | 0.0 | 2.0 | |
藻华与海冰 时序特征参数 | 无冰期持续时间 | tice-free/d | 12.4 | 7.6 |
藻华持续时间 | tBloomDur/d | 0.2 | 0.2 | |
藻华期间累积CHL | ρBloomInteg/(mg·m-3) | 12.4 | 0.6 | |
藻华期间CHL峰值 | ρBloomPeak/(mg·m-3) | 37.5 | 7.9 | |
南极磷虾出现与 时序特征参数时间差 | 南极磷虾出现时间距离海冰消退时间之间的天数 | tDATOR/d | 1.5 | 9.3 |
南极磷虾出现时间距离海冰生成时间之间的天数 | tDBTOA/d | 1.7 | 2.7 | |
南极磷虾出现时间距离藻华起始时间之间的天数 | tDABloomInit/d | 9.6 | 1.5 | |
南极磷虾出现时间距离藻华结束时间之间的天数 | tDBBloomTerm/d | 3.1 | 0.5 | |
南极磷虾出现时间距离藻华期间CHL达峰时间之间的天数 | tDABloomPeak/d | 1.1 | 27.7 |
Fig.4 Data distribution of climatology environmental parameters during austral summer (a-h) and kernal density of Antarctic krill presence matched single-moment environmental parameters (i-p) in the Cosmonauts Sea and the D’Urville Sea
Fig.6 Interannual variation of Antarctic krill first appearance dates of the regions of interest (ROIs) in the coastal area and open ocean of the Cosmonauts Sea (a) and the D’Urville Sea (b) from 1997 to 2019 (Range of ROIs can be seen in Fig.1.)
Fig.7 Interannual variation of Antarctic krill total present days of the regions of interest (ROIs) in the coastal area and open ocean of the Cosmonaut Sea (a) and the D’Urville Sea (b) from 1997 to 2019 (Range of ROIs can be seen in Fig.1.)
Fig.8 Interannual variation of modeling environmental parameters of ROIs in the Cosmonauts Sea from 1997 to 2019 (Blue line represents open ocean and red line represents coastal area. The dashed line represents the trend line that has passed the significance test (p<0.1). Range of ROIs can be seen in Fig.1.)
Fig.9 Interannual variation of main modeling environmental parameters of ROIs in the D’Urville Sea from 1997 to 2019 (Blue line represents open ocean and red line represents coastal area. The dashed line represents the trend line that has passed the significance test (p<0.1). Range of ROIs can be seen in Fig. 1. The modeling input parameter SIC is primarily comprised of zero values and does not exhibit significant trend characteristics, therefore, it is not plotted.)
[1] | CROXALL J P, REID K, PRINCE P A. Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill[J]. Marine Ecology Progress Series, 1999, 177: 115-131. |
[2] | TRATHAN P N, HILL S L. The importance of krill predation in the Southern Ocean[M]//SIEGEL V. Biology and ecology of Antarctic krill. Cham: Springer International Publishing, 2016: 321-350. |
[3] |
CAVAN E L, BELCHER A, ATKINSON A, et al. The importance of Antarctic krill in biogeochemical cycles[J]. Nature Communications, 2019, 10(1): 4742.
DOI PMID |
[4] | KAWAGUCHI S, ISHIDA A, KING R, et al. Risk maps for Antarctic krill under projected Southern Ocean acidification[J]. Nature Climate Change, 2013, 3(9): 843-847. |
[5] | MEYER B, ATKINSON A, BERNARD K S, et al. Successful ecosystem-based management of Antarctic krill should address uncertainties in krill recruitment, behaviour and ecological adaptation[J]. Communications Earth & Environment, 2020, 1: 28. |
[6] | SIEGEL V. Introducing Antarctic krill Euphausia superba Dana, 1850[M]//SIEGEL V. Biology and ecology of Antarctic krill. Cham: Springer International Publishing, 2016: 1-19. |
[7] | PIÑONES A, FEDOROV A V. Projected changes of Antarctic krill habitat by the end of the 21st century[J]. Geophysical Research Letters, 2016, 43(16): 8580-8589. |
[8] | THORPE S E, TARLING G A, MURPHY E J. Circumpolar patterns in Antarctic krill larval recruitment: An environ-mentally driven model[J]. Marine Ecology Progress Series, 2019, 613: 77-96. |
[9] | ATKINSON A, SHREEVE R S, HIRST A G, et al. Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage[J]. Limnology and Oceanography, 2006, 51(2): 973-987. |
[10] | FLORES H, VAN FRANEKER J A, SIEGEL V, et al. The association of Antarctic krill Euphausia superba with the under-ice habitat[J]. PLoS One, 2012, 7(2): e31775. |
[11] | BROWN M, KAWAGUCHI S, CANDY S, et al. Temperature effects on the growth and maturation of Antarctic krill (Euphausia superba)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(7/8): 672-682. |
[12] | KAWAGUCHI S, CANDY S G, KING R, et al. Modelling growth of Antarctic krill. I. Growth trends with sex, length, season, and region[J]. Marine Ecology Progress Series, 2006, 306: 1-15. |
[13] | CANDY S G. Long-term trend in mean density of Antarctic krill (Euphausia superba) uncertain[J]. Annual Research & Review in Biology, 2021, 36(12): 27-43. |
[14] | TRATHAN P N, FIELDING S, WARWICK-EVANS V, et al. Seabird and seal responses to the physical environment and to spatio-temporal variation in the distribution and abundance of Antarctic krill at South Georgia, with implications for local fisheries management[J]. ICES Journal of Marine Science, 2022, 79(9): 2373-2388. |
[15] | 朱国平. 基于广义可加模型研究时间和环境因子对南极半岛北部南极磷虾渔场的影响[J]. 水产学报, 2012, 36(12):1863-1871. |
ZHU G P. Effects of temporal and environmental factors on the fishing ground of Antarctic krill (Euphausia superba) in the northern Antarctic Peninsula based on generalized additive model[J]. Journal of Fisheries of China, 2012, 36(12): 1863-1871. | |
[16] | TRATHAN P N, BRIERLEY A S, BRANDON M A, et al. Oceanographic variability and changes in Antarctic krill (Euphausia superba) abundance at South Georgia[J]. Fisheries Oceanography, 2003, 12(6): 569-583. |
[17] | MURASE H, KITAKADO T, HAKAMADA T, et al. Spatial distribution of Antarctic minke whales (Balaenoptera bona-erensis) in relation to spatial distributions of krill in the Ross Sea, Antarctica[J]. Fisheries Oceanography, 2013, 22(3): 154-173. |
[18] | LIN S Y, ZHAO L, FENG J L. Predicted changes in the distribution of Antarctic krill in the Cosmonaut Sea under future climate change scenarios[J]. Ecological Indicators, 2022, 142: 109234. |
[19] | FRIEDLAENDER A S, JOHNSTON D W, FRASER W R, et al. Ecological niche modeling of sympatric krill predators around Marguerite Bay, Western Antarctic Peninsula[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2011, 58(13/14/15/16): 1729-1740. |
[20] | NACHTSHEIM D A, JEROSCH K, HAGEN W, et al. Habitat modelling of crabeater seals (Lobodon carcinophaga) in the Weddell Sea using the multivariate approach Maxent[J]. Polar Biology, 2017, 40(5): 961-976. |
[21] | BIBIK V, MASLENNIKOV V, PELEVIN A, et al. Distribu-tion of Euphausia Superba Dana in relation to environmental conditions in the Commonwealth and Cosmonaut Seas[M]//MAKAROV R R. Interdisciplinary investigations of the pelagic ecosystem in the Commonwealth and Cosmonauts Seas. Moscow: VNIRO Publishing, 1988: 109-125. |
[22] | BIBIK V, MASLENNIKOV V, PELEVIN A, et al. he current system and the distribution of waters of different modifications in the Cooperation and Cosmonaut Seas[M]//Interdisciplinary investigations of pelagic ecosystem in the Cooperation and Cosmonaut Seas. Moscow: VNIRO Publishing, 1988: 10-43. |
[23] | GEDDES J A, MOORE G W K. A climatology of sea ice embayments in the Cosmonaut Sea,Antarctica[J]. Geophysical Research Letters, 2007, 34(2): L02505. |
[24] | SWADLING K M, PENOT F, VALLET C, et al. Intera-nnual variability of zooplankton in the Dumont d’Urville sea (139°E—146°E), east Antarctica, 2004-2008[J]. Polar Science, 2011, 5(2): 118-33. |
[25] | MATHIOT P, JOURDAIN N C, BARNIER B, et al. Sensitivity of coastal polynyas and high-salinity shelf water production in the Ross Sea,Antarctica, to the atmospheric forcing[J]. Ocean Dynamics, 2012, 62: 701-723. |
[26] | GBIF occurrence download[DS/OL]. (2022-2-09) [2023-2-09]. https://doi.org/10.15468/dl.28z24e. |
[27] | CCAMLR. Precautionary catch limitation on Euphausia superba in Statistical Division 58.4.2[Z/OL]. [2023-2-09]. https://cm.ccamlr.org/en/measure-51-03-2008. |
[28] | HU L M, ZHANG Y, WANG Y Z, et al. Paleoproductivity and deep-sea oxygenation in Cosmonaut Sea since the last glacial maximum: Impact on atmospheric CO2[J]. Frontiers in Marine Science, 2023, 10: 1215048. |
[29] | HUANG B Y, LIU C Y, BANZON V, et al. Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1[J]. Journal of Climate, 2021, 34(8): 2923-2939. |
[30] | FETTERER F, KNOWLES K, MEIER W N, et al. Sea ice index: version 3[DS/OL]. Boulder, Colorado USA: National Snow and Ice Data Center, 2017. [2023-2-09]. https://doi.org/10.7265/N5K072F8. |
[31] | SATHYENDRANATH S, JACKSON T, BROCKMANN C, et al. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version 5.0 Data[DS/OL]. NERC EDS Centre for Environmental Data Analysis, 2021. https://climate.esa.int/en/projects/ocean-colour/data/. |
[32] | THOMALLA S J, NICHOLSON S A, RYAN-KEOGH T J, et al. Widespread changes in Southern Ocean phytoplankton blooms linked to climate drivers[J]. Nature Climate Change, 2023, 13(9): 975-984. |
[33] | RACAULT M F, SATHYENDRANATH S, PLATT T. Impact of missing data on the estimation of ecological indicators from satellite ocean-colour time-series[J]. Remote Sensing of Environment, 2014, 152: 15-28. |
[34] | STORTO A, MASINA S. C-GLORSv5: An improved multi-purpose global ocean eddy-permitting physical reanalysis[J]. Earth System Science Data, 2016, 8(2): 679-696. |
[35] | PHILLIPS S J, ANDERSON R P, DUDÍK M, et al. Opening the black box: An open-source release of Maxent[J]. Ecography, 2017, 40(7): 887-893. |
[36] | PHILLIPS S J, DUDÍK M, SCHAPIRE R E. A maximum entropy approach to species distribution modeling[C]// Proceedings of the twenty-first international conference on machine learning. [S.l.]: ACM, 2004: 83. |
[37] | FITHIAN W, HASTIE T. Finite-sample equivalence in statistical models for presence-only data[J]. The Annals of Applied Statistics, 2013, 7(4): 1917-1939. |
[38] | LOBO J M, JIMÉNEZ-VALVERDE A, REAL R. AUC: A misleading measure of the performance of predictive distribution models[J]. Global Ecology and Biogeography, 2008, 17(2): 145-151. |
[39] | PLATT T, FUENTES-YACO C, FRANK K T. Marine ecology: Spring algal bloom and larval fish survival[J]. Nature, 2003, 423(6938): 398-399. |
[40] | KOHLBACH D, LANGE B A, SCHAAFSMA F L, et al. Ice algae-produced carbon is critical for overwintering of Antarctic krill Euphausia superba[J]. Frontiers in Marine Science, 2017, 4: 310. |
[41] | FERREIRA A, BRITO A C, MENDES C R B, et al. OC4-SO: A new chlorophyll-a algorithm for the western Antarctic Peninsula using multi-sensor satellite data[J]. Remote Sensing, 2022, 14(5): 1052. |
[42] | SIEGEL V, WATKINS J L. Distribution, biomass and demography of Antarctic krill, Euphausia superba[M]//SIEGEL V. Biology and ecology of Antarctic krill. Cham: Springer International Publishing, 2016: 21-100. |
[43] | MARRARI M, DALY K L, HU C M. Spatial and temporal variability of SeaWiFS chlorophyll a distributions west of the Antarctic Peninsula: Implications for krill production[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2008, 55(3/4): 377-392. |
[44] | SCHMIDTKO S, STRAMMA L, VISBECK M. Decline in global oceanic oxygen content during the past five decades[J]. Nature, 2017, 542(7641): 335-339. |
[45] |
LEVIN L A. Manifestation, drivers, and emergence of open ocean deoxygenation[J]. Annual Review of Marine Science, 2018, 10: 229-260.
DOI PMID |
[46] | PEZZA A B, RASHID H A, SIMMONDS I. Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, Southern Annular Mode and ENSO[J]. Climate Dynamics, 2012, 38(1): 57-73. |
[47] | LIMPASUVAN V, HARTMANN D L. Eddies and the annular modes of climate variability[J]. Geophysical Research Letters, 1999, 26(20): 3133-3136. |
[48] | MACKINTOSH A N, ANDERSON B M, LORREY A M, et al. Regional cooling caused recent New Zealand glacier advances in a period of global warming[J]. Nature Commu-nications, 2017, 8: 14202. |
[49] | GREENE C A, BLANKENSHIP D D, GWYTHER D E, et al. Wind causes Totten Ice Shelf melt and acceleration[J]. Science Advances, 2017, 3(11): e1701681. |
[50] | GREAVES B L, DAVIDSON A T, FRASER A D, et al. The Southern Annular Mode (SAM) influences phytoplankton communities in the seasonal ice zone of the Southern Ocean[J]. Biogeosciences, 2020, 17(14): 3815-3835. |
[51] | SALLÉE J B, SPEER K G, RINTOUL S R. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode[J]. Nature Geoscience, 2010, 3(4): 273-279. |
[1] | LIU Yuening, GONG Fang, HE Xianqiang, JIN Xuchen. Long-term changes of CODMn flux into the sea: Retrieval of spectral information from remote sensing images of Oujiang River [J]. Journal of Marine Sciences, 2023, 41(1): 45-54. |
[2] | TIAN Fangyan, HE Xianqiang, ZHU Bozhong, GONG Fang, ZHU Qiankun. Remote sensing study of tidal flat area change in Yueqing Bay in recent 30 years considering tidal level correction [J]. Journal of Marine Sciences, 2023, 41(1): 68-81. |
[3] | LIU Tingyu, BAI Yan, ZHU Bozhong, LI Teng, GONG Fang. Satellite retrieval algorithm of high spatial resolution sea surface partial pressure of CO2: Application of machine learning in Xiangshan Bay in autumn [J]. Journal of Marine Sciences, 2023, 41(1): 82-95. |
[4] | LU Aiying, LI Peng, ZHU Haitian, CHEN Peng, ZHAO Yizhi. Identification of offshore oil and gas platform in the Bohai Sea based on multi-source satellite remote sensing [J]. Journal of Marine Sciences, 2022, 40(4): 82-89. |
[5] | JIANG Jin'gang, FENG Huiyun, ZHANG Yaguo, HE Xianqiang. Impact of spatial variability on the validation of ocean chlorophyll-a concentration remote sensing product [J]. Journal of Marine Sciences, 2021, 39(1): 9-19. |
[6] | LI Cheng, LI Huan, WANG Hui, GAO Jia, WANG Guo-song, DONG Jun-xing, PAN Song, LIU Ke-xiu. Data analysis of High Frequency Surface Wave Radar at Zhujiajian-Shengshan during Typhoon Chan-hom [J]. Journal of Marine Sciences, 2017, 35(1): 41-46. |
[7] | QIU Sha-yi, LIANG Chu-jin, DONG Chang-ming, LIU Zheng-li. Analysis of the temporal and spatial variations in the wind and wave over the South China Sea [J]. Journal of Marine Sciences, 2013, 31(4): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||