Effects of typhoon Tembin on underwater acoustic wave propagation in two kinds of deep sound channel

  • MA Zhi-kang ,
  • FU Dong-yang ,
  • QU Ke ,
  • ZHU Feng-qin
Expand
  • College of Electronics and Information Engineering,Guangdong Ocean University,Zhanjiang 524088,China

Received date: 2018-11-07

  Revised date: 2019-05-20

  Online published: 2022-11-14

Abstract

Using RAM (Range dependent Acoustic Model) model which was based on parabolic equation algorithm and combined Argo floats with multi-satellite data, effects of typhoon on acoustic propagation characteristics for incomplete deep-sound channel(3 000 m) and complete deep-sound channel(5 500 m) were researched. Results show that the influence of typhoon on sea water is confined in surface layer, which is characterized by the thickening of the mixed-layer, zero temperature gradient and positive sound speed gradient in the mixed-layer. At a certain depth below the mixed-layer, the water temperature increases, and the corresponding sound speed increases. When the sound source is placed in the mixed-layer, sound propagation in sea surface layer will be affected, the surface waveguide sound propagation and leakage modes appear in both incomplete and complete deep-sound channels. When the source is under the mixed layer, typhoon makes the convergence zone close to the sound source under the condition of incomplete deep-sound channel.Under the condition of complete deep-sound channel, the disturbance of typhoon on the location of convergence zone is not obvious, but the flip depth of the sound wave increases nearly 500 m.

Cite this article

MA Zhi-kang , FU Dong-yang , QU Ke , ZHU Feng-qin . Effects of typhoon Tembin on underwater acoustic wave propagation in two kinds of deep sound channel[J]. Journal of Marine Sciences, 2019 , 37(3) : 40 -48 . DOI: 10.3969/j.issn.1001-909X.2019.03.005

References

[1] FU Dong-yang. The study of water color and temperature environments in the Northwest Pacific Ocean by typhoon based on satellite remote sensing data[D]. Guangzhou: Graduate school of Chinese Academy of Sciences, 2009.
付东洋. 基于卫星遥感研究台风对西北太平洋海域水色水温环境的影响[D]. 广州:中国科学院研究生院, 2009.
[2] LI Xue, FU Dong-yang, ZHANG Ying, et al. The impacts of super typhoon Rammasun on the environment of the northwestern South China Sea[J]. Journal of Tropical Oceanography, 2016,35(6):19-28.
李薛,付东洋,张莹,等. 超强台风“威马逊”对南海西北海域海洋环境的影响[J]. 热带海洋学报,2016,35(6):19-28.
[3] FU Dong-yang, DING You-zhuan, LEI Hui, et al. Analysis of the effects on surface temperature and ocean color environment by typhoon Nari based on remote sensing[J]. Journal of Marine Science, 2009,27(2):64-70.
付东洋,丁又专,雷惠,等. “百合”台风对海表温度及水色环境影响的遥感分析[J]. 海洋学研究,2009,27(2):64-70.
[4] LI Jun, LIN Ju, FENG Hai-hong. Effects of typhoon ‘Meranti’ on acoustic propagation characteristics[J]. Technical Acoustic, 2016,35(6):504-511.
李骏,林巨,冯海泓. 台风“莫兰蒂”对声传播特性的影响研究[J].声学技术,2016,35(6):504-511.
[5] WEN Hong-tao, YANG Yan-ming, WANG Ning, et al. Effects of typhoon “KAI-TAK” on deep ocean ambient noise in the South China Sea[J]. Acta Acoustic, 2016,41(6):804-812.
文洪涛,杨燕明,王宁,等. 台风“启德”对南海完整深海声道海洋环境噪声特性的影响研究[J]. 声学学报,2016,41(6):804-812.
[6] ZHANG Xu, ZHANG Yong-gang, ZHANG Jian-xue, et al. The effect of ocean mixed-layer structure on acoustic propagation in a surface duct environment[J]. Acta Oceanologica Sinica, 2012,34(1):79-89.
张旭,张永刚,张健雪,等. 海洋混合层结构对表面声道中声传播特性的影响分析[J]. 海洋学报:中文版,2012,34(1):79-89.
[7] RUAN Hai-lin, YANG Yan-ming, WEN Hong-tao, et al. Preliminary study on effects of typhoon Usagi on underwater sound propagation[C]//Ocean Acoustics. IEEE, 2016:1-7.
[8] YANG Guang-bing, LU Lian-gang, WANG Guan-suo, et al. Coastal sound-field change due to typhoon-induced sediment warming[J]. Journal of the Acoustical Society of America, 2016, 140(3):EL242.
[9] WU Ling-wei, LING Zheng. Analysis of sea surface salinity response to typhoon in the Northwest Pacific based on Argo data[J].Journal of Marine Science, 2015,33(3):1-6.
吴铃蔚,凌征. 基于Argo资料的西北太平洋海表面盐度对台风的响应特征分析[J]. 海洋学研究,2015,33(3):1-6.
[10] TAPPERT F D. The parabolic approximation method[J]. Wave Propagation & Underwater Acoustics, 1977, 70:224-287.
[11] COLLINS M D. A Split-step Padé Solution for the Parabolic Equation Method[J]. Journal of the Acoustical Society of America, 1993, 93(4):1 736-1 742.
[12] COLLINS M D, CEDERBERG R J, KING D B, et al. Comparison of algorithms for solving parabolic wave equations[J]. Journal of the Acoustical Society of America, 1996, 100(1):178-182.
[13] XU Wen-ling. The impact of the typhoon on sea surface temperature[D]. Qingdao: Ocean University of China, 2007.
徐文玲. 台风对海表温度的影响[D]. 青岛:中国海洋大学,2007.
[14] YANG Yong-hong, WANG Cui-jie. Comparison of two methords for calculating ocean sound speed profiles based on pressure and depth[J]. Hydrographic Surveying and Charting, 2015,35(3):64-66.
杨永红,王翠杰. 基于压强和深度的两种不同声速计算方法比较[J].海洋测绘,2015,35(3):64-66.
[15] LEROY C C, ROBINSON S P, GOLDSMITH M J. A new equation for the accurate calculation of sound speed in all oceans[J]. Journal of the Acoustical Society of America, 2008, 124(5):2 774-2 782.
[16] DUAN Rui. Studies on sound propagation and source localization methods in deep water[D]. Xi'an: Northwestern Polytechnical University, 2016.
段睿. 深海环境水声传播及声源定位方法研究[D]. 西安:西北工业大学,2016.
Outlines

/