The effect of artificial shoreline construction on the pattern of mainland coastline in Zhejiang Province

  • YE Meng-yao ,
  • LI Jia-lin ,
  • SHI Xiao-li ,
  • LIU Yong-chao ,
  • JIANG Yi-mei ,
  • SHI Zuo-qi
Expand
  • 1. Department of Scientific Research of the Urban,Ningbo University, Ningbo 315211, China;
    2. Marine Culture and Economic Research Center of Zhejiang Province, Ningbo 315211, China;
    3. Editorial Office of Journal of Ningbo University, Ningbo University, Ningbo 315211, China

Received date: 2015-08-09

  Revised date: 2016-04-02

  Online published: 2022-11-24

Abstract

The coastal artificial morphology construction is an important way for coastal countries to exploit the coastal resources. The formation of coastal artificial shoreline changes the pattern of natural shoreline, and influences the succession laws of the natural shoreline. In this study, the mainland coastline in Zhejiang Province in different times was extracted, based on TM remote sensing images in 1990, 2000 and 2010, the structure of mainland coastline and the influence of artificial shoreline construction on the patterns of the coastline in Zhejiang Province were analyzed. The results show that: (1) Affected by the development activities of human, the mainland coastal landscape in Zhejiang Province was characterized by the continued growing of the proportion of the artificial shoreline in recent 20 years. (2) The speed of artificial shoreline construction had significantly differences at different coastal area, especially at the Hangzhou Bay, the Sanmen Bay and the Taizhou Bay. (3) In these 20 years, coastal erosion and retreat occurred at only a small part of mainland coastline in Zhejiang Province. As a whole, it was advancing to the sea obviously. (4) The construction of artificial shoreline shortened the length of natural shoreline and reduced the tortuosity of natural coastline in Zhejiang Province in the process of straightening, but increased the diversity index of the continental coastline.

Cite this article

YE Meng-yao , LI Jia-lin , SHI Xiao-li , LIU Yong-chao , JIANG Yi-mei , SHI Zuo-qi . The effect of artificial shoreline construction on the pattern of mainland coastline in Zhejiang Province[J]. Journal of Marine Sciences, 2016 , 34(3) : 34 -42 . DOI: 10.3969/j.issn.1001-909X.2016.03.006

References

[1] ZHU Xiao-ge. Remote sensing monitoring of coastline changes in Pearl River Estuary[J]. Marine Environmental Science,2002,21(2):19-22.
朱小鸽.珠江口海岸线变化的遥感监测[J].海洋环境科学,2002,21(2):19-22.
[2] Li Xue-jie. Application of the remote sensing method in the analysis of the shoreline change and its environmental impact in the Lingdingyang Bay, Pearl River estuary, Guangdong, China[J]. Geological Bulletin of China,2007,26(2):215-222.
李学杰.应用遥感方法分析珠江口伶仃洋的海岸线变迁及其环境效应[J].地质通报,2007,26(2):215-222.
[3] SHEIK M, CHANDRASEKAR N. A shoreline change analysis along the coast between Kanyakumari and Tuticorin, India, using digital shoreline analysis system[J]. Geo-spatial Information Science,2011,14(4):282-293.
[4] VINAYARAJ P, JOHNSON G, DORA G U, et al. Quantitative estimation of coastal changes along selected locations of Karnataka, India: A GIS and remote sensing approach[J]. International Journal of Geosciences,2011,02(04):385-393.
[5] XU Jin-yong, ZHANG Zeng-xiang, ZHAO Xiao-li, et al. Analysis on the spatial-temporary changes of China northern coastline from 2000-2012[J]. Geography,2013,68(5):651-660.
徐进勇,张增祥,赵晓丽,等.2000-2012年中国北方海岸线时空变化分析[J].地理学报,2013,68(5):651-660.
[6] GAO Yi, WANG Hui, SU Fen-zhen, et al. Analysis on spatial-temporary changes of China mainland coastline in latest 30 years[J]. Acta of Oceanography Scinica,2013,35(6):31-42
高义,王辉,苏奋振,等.中国大陆海岸线近30a的时空变化分析[J].海洋学报,2013,35(6):31-42.
[7] DEWIDAR K. Changes in the shoreline position caused by natural processes for coastline of Marsa Alam and Hamata, Red Sea, Egypt[J]. International Journal of Geosciences,2011,2(04):523-529.
[8] SARANATHAN E, CHANDRASEKARAN R, SOOSAI MANICKARAJ D, et al. Shoreline changes in Tharangampadi Village, Nagapattinam District, Tamil Nadu, ndia—A case study[J]. Journal of the Indian Society of Remote Sensing,2011,39(1):107-115.
[9] DALLAS K L, BARNARD P L. Anthropogenic influences on shoreline and nearshore evolution in the San Francisco Bay coastal system[J]. Estuarine, Coastal and Shelf Science,2011,92(1):1-9.
[10] SUN Yun-hua, ZHANG An-ding, WANG Qing. Evolution of coastal mudflat Laizhou bay at the southeastern based on RS and GIS under the influence of human activities over the past three decades[J]. Marine Science Bulletin,2011,30(1):66-72.
孙云华,张安定,王庆.基于RS和GIS的近30年来人类活动影响下莱州湾东南岸海岸湿地演变[J].海洋通报,2011,30(1):66-72.
[11] LÜ Jing-fu, YIN Ping, BIAN Shu-hua, et al. Selection of methods for calculating shoreline change rate and analysis of affecting factor[J]. Advances in Marine Science,2003,21(1):51-59.
吕京福,印萍,边淑华,等.海岸线变化速率计算方法及影响要素分析[J].海洋科学进展,2003,21(1):51-59.
[12] MAITI S, ATTACHARYA A K. Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach[J]. Marine Geology,2008,257(1):11-23.
[13] LI Xing, ZHOU Yun-xuan, KUANG Run-yuan. Analysis and trend prediction of shoreline evolution in Chongming Dongtan, Shanghai[J]. Journal of Jilin University:Earth Science Edition,2010,40(2):417-424.
李行,周云轩,况润元.上海崇明东滩岸线演变分析及趋势预测[J].吉林大学学报:地球科学版,2010,40(2):417-424.
[14] SANTRA A, MITRA D, MITRA S. Spatial modeling using high resolution image for future shoreline prediction along Junput Coast, West Bengal, India[J]. Geo-spatial Information Science,2011,14(3):157-163.
[15] YANG Lei, LI Jia-lin, YUAN Qi-xiang, et al. Spatial-temporary changes of continental coastline in southern China[J]. Journal of Marine Science,2014,32(3):42-49.
杨磊,李加林,袁麒翔,等.中国南方大陆海岸线时空变迁[J].海洋学研究,2014,32(3):42-49.
[16] XU Liang-hui, LI Jia-lin, YANG Lei, et al. Integrated suitability evaluation on mainland coastline resources in Zhejiang Province[J]. China Land Sciences,2015,29(4):49-56.
徐谅慧,李加林,杨磊,等.浙江省大陆岸线资源的适宜性综合评价研究[J].中国土地科学,2015,29(04):49-56.
[17] LOU Dong, LIU Ya-jun, ZHU Bing-jian. Features on spatial-temporary changes, functional classification and treatment measures of Zhejiang coastline[J]. Ocean Development and Management,2012,29(3):11-16.
楼东,刘亚军,朱兵见.浙江海岸线的时空变动特征、功能分类及治理措施[J].海洋开发与管理,2012,29(3):11-16.
[18] GAO Zhi-qiang, LIU Xiang-yang, NING Ji-cai, et al. Analysis on changes in coastline and reclamation area and its causes based on 30-year satellite data in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,12(30):140-147.
高志强,刘向阳,宁吉才,等.基于遥感的近30a中国海岸线和围填海面积变化及成因分析[J].农业工程学报,2014,12(30):140-147.
[19] SUN Li-e. Coastline changes monitoring with remote sensing of the Zhejiang Province and research on coastal vulnerability assessment[D]. Qingdao: The First Institute of Oceanography,SOA,2013.
孙丽娥.浙江省海岸线变迁遥感监测及海岸脆弱性评估研究[D].青岛:国家海洋局第一海洋研究所,2013.
[20] WANG Xian-li, XIAO Du-ning, BU Ren-cang, et al. Analysis on landscape patterns of Liaohe delta wetland[J]. Acta Ecologica Sinica,1997,17(3):317-323.
王宪礼,肖笃宁,布仁仓,等.辽河三角洲湿地的景观格局分析[J].生态学报,1997,17(3):317-323.
Outlines

/