Oxygen isotope constraint on the temperature condition of serpentinization in abyssal peridotites

  • XU Xucheng 1 ,
  • YU Xing 1, 2, * ,
  • HU Hang 1, 2 ,
  • HE Hu 1 ,
  • YU Ya’na 1
Expand
  • 1. Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, MNR, Hangzhou 310012, China
  • 2. Ocean College, Zhejiang University, Zhoushan 316021, China

Received date: 2023-05-18

  Revised date: 2023-06-25

  Online published: 2024-08-09

Abstract

Abyssal peridotite is widely distributed in tectonic environments such as mid-ocean ridges, subduction zones, and continental margins, and typically undergoes subsequent alterations, among which serpentinization is the most significant type. Serpentinization refers to the chemical process wherein ferromagnesium-rich minerals in peridotite, such as olivine and pyroxene, are replaced by a series of secondary minerals like serpentine, magnetite, and brucite. The conditions of serpentinization are closely linked with hydrothermal circulation and the migration of mineral-forming substances, bearing significant implications for indicating hydrothermal mineralization. Traditional methods of petrology and geochemistry exhibit polysemic interpretations and uncertainties when reflecting serpentinization conditions, with different minerals or chemical indicators possibly suggesting different outcomes. Oxygen isotopes are ubiquitous in nature and the oxygen isotope tracing method, due to its wide applicability, ease of comparison, and support for in-situ micro-zone analysis, can clearly reflect the reaction conditions and processes of the mineral or rock-fluid system. This study primarily provides an overview of the principles of oxygen isotope thermometry, the process of abyssal peridotite serpentinization, application cases of oxygen isotope thermometry in the serpentinization of abyssal peridotite, factors influencing the oxygen isotope compositions of serpentinites, as well as the advantages and limitations of oxygen isotope thermometry. It aims to offer a reference for a more profound understanding of the serpentinization process of abyssal peridotite.

Cite this article

XU Xucheng , YU Xing , HU Hang , HE Hu , YU Ya’na . Oxygen isotope constraint on the temperature condition of serpentinization in abyssal peridotites[J]. Journal of Marine Sciences, 2024 , 42(2) : 104 -112 . DOI: 10.3969/j.issn.1001-909X.2024.02.010

0 引言

深海橄榄岩蛇纹石化是指橄榄岩在深海环境下经过一系列的变质、蚀变和交代作用形成蛇纹石等次生矿物的过程。在蛇纹石化过程中,被抬升的深海橄榄岩从地幔岩石转变为地壳组分,并伴随地幔-地壳-海水之间的物质交换和能量传递,因此研究蛇纹石化过程对于揭示地球深部物质循环和水岩圈层相互作用具有重要意义[1-4]
深海橄榄岩蛇纹石化作用是一系列复杂的物理化学反应过程,具有多端元、多参数、非线性等特点,其作用过程和机制还存在许多未解之谜。蛇纹石化反应的温度条件对控制反应的进程具有重要的影响,不同温度可以产生不同的蚀变矿物种类,并会影响物质交换的程度和类型以及热液成矿物质的淋滤和输运。氧元素是地球系统的关键组分,可在岩石、矿物、水体以及生物等各种对象中获取其同位素比值,因而氧同位素被广泛应用于地质学、地球化学、环境科学和生命科学等领域,成为了探究地球物质循环和地球环境演变的重要手段[5-9]。通过分析岩石中的氧同位素比值,可以推断岩石形成条件、水岩反应中的流体性质、源区的氧同位素组成等[5,10-12]
本文重点关注氧同位素测温法在深海橄榄岩蛇纹石化研究中的应用,回顾氧同位素测温法的原理和方法,探讨深海橄榄岩蛇纹石化过程、橄榄岩氧同位素比值变化的影响因素及氧同位素对反应温度条件的指示等,以期为深海橄榄岩蛇纹石化的成因机制和地球深部物质循环的研究提供新的思路和方法。

1 深海橄榄岩蛇纹石化过程及研究意义

深海橄榄岩广泛分布于洋中脊、俯冲板片和弧前地幔楔等构造单元,代表上地幔组分[13-14]。洋中脊深海橄榄岩是地幔熔融的残余组分,多数分布在慢速/超慢速扩张洋脊上,并广泛出露于大洋转换断层、断裂带或局部洋脊裂谷内[14-15]。洋中脊深海橄榄岩普遍经历复杂的后期蚀变过程如蛇纹石化、绿泥石化、滑石化、碳酸盐化等,其中蛇纹石化代表低温蚀变,是最主要的橄榄岩蚀变类型[16-19]。出露地表的深海橄榄岩普遍经历蛇纹石化作用,鲜有采集到新鲜原岩的报道[20-23]
蛇纹石化反应指橄榄岩中原生富镁矿物(橄榄石、斜方辉石)被硅酸镁水合矿物(主要为蛇纹石)、磁铁矿和水镁石所取代的化学过程。本质上是将橄榄石和辉石中的Fe2+氧化成Fe3+,水中的H+被还原成氢气,反应的主要产物为硅不饱和矿物(如蛇纹石、水镁石)、磁铁矿和氢气。此外,随着反应进行会生成少量副矿物,如水钙铝榴石、刚玉、斜硅镁石和天然铁镍钴金属等[24]。典型的蛇纹石化反应方程式如下:
6(Mg,Fe)2SiO4(铁镁橄榄石)+13H2O=3(Mg,Fe)3Si2O5(OH)4(蛇纹石)+3Mg(OH)2(水镁石)+Fe3O4(磁铁矿)+4H2(aq)
6MgSiO3(斜方辉石)+3H2O=Mg3Si2O5(OH)4(蛇纹石)+Mg3Si4O10(OH)2(滑石)
3(Mg,Fe)2SiO4(铁镁橄榄石)+SiO2(aq)+4H2O+4O2(aq)=2Mg3Si2O5(OH)4(蛇纹石)+2Fe3O4(磁铁矿)
2Mg2SiO4(镁橄榄石)+CO2(aq)+2H2O=Mg3Si2O5(OH)4(蛇纹石)+MgCO3(菱镁矿)
6(Mg,Fe)2SiO4(铁镁橄榄石)+3CO2(aq)+6H2O+8O2(aq)=3Mg3Si2O5(OH)4(蛇纹石)+4Fe3O4(磁铁矿)+3MgCO3(菱镁矿)
蛇纹石化过程会显著改变岩石的物理性质和化学组成,对洋壳流变性、洋壳热结构、大洋岩石圈浅层和深层地球化学循环以及成矿作用等有重要的影响。蛇纹石化过程会改变岩石圈密度和弹性模量,影响地壳的稳定性进而引发地震活动[2]。橄榄岩蚀变过程中可以吸收大量的CO2,在全球碳循环中起着重要作用[25-26]。蚀变产物蛇纹石是流体活动性元素(fluid mobile elements, FME)的储层,其在洋中脊附近吸收FME,随着板块运动,在俯冲过程中释放FME[27-28]。由于蛇纹石化过程通常开始于地壳深处,研究蛇纹石化过程有助于理解地球深部过程和演化[29-30]

2 氧同位素测温法的基本原理和技术

氧是地壳中丰度最高的元素,且在水体和大气中的含量也非常高。氧有三种天然存在的稳定同位素,分别是16O、17O和18O。其中,16O最常见,占地壳中氧总量的99.76%,18O占0.20%,17O占0.04%[31]。虽然这三种氧同位素的化学性质基本相同,但由于质量不同,在物理、化学作用过程中,它们在不同物质间同位素比值分配不同,产生分馏现象[32]。氧同位素分馏是地质学研究中的一个重要工具。
氧同位素的分馏方式主要包括热力学分馏和动力分馏[33]。氧同位素测温基于18O和16O之间的热力学分馏。在水岩反应过程中,不同分子之间化学键断裂所需的能量存在差异,断裂18O和其他元素之间的化学键所需的能量大于断裂16O和其他元素之间的化学键所需的能量,故同位素的分馏程度主要受温度影响。当温度高于化学键断裂的阈值时,氧同位素在水岩反应中的交换速度会加快[34]
氧同位素组成通常用δ值表示。δ值是指相对于一个国际标准物质的同位素比值偏差,以‰为单位。其定义为
δ18O=[(Rsample/ Rstandard)-1]×1 000
其中:Rsample表示样品中18O/16O的值,Rstandard表示标准物质中18O/16O的值。通常使用的标准物质是V-SMOW(维也纳标准平均大洋水)[35],是一种人工制备的水样,其氢和氧同位素组成与标准平均大洋水(standard mean ocean water, SMOW)的同位素组成非常接近[36]
氧同位素热力学分馏可表示为关于温度的函数[12,37]。使用氧同位素作为温度计需要得到矿物-流体或矿物-矿物氧同位素分馏系数,并假定共沉淀矿物和流体之间达到并保持了同位素平衡。再将共沉淀矿物中测得的δ18O值与相应的氧同位素分馏函数相结合,便可计算得到水岩反应时流体的平衡温度。
前人在不同实验室条件下已经测得多个蛇纹石化氧同位素分馏公式,如ZHENG[38]计算了适用于0~1 200 ℃(273~1 473 K)硅酸盐矿物与水之间的分馏系数,其中蛇纹石-水的分馏公式为
103ln α s e r p - w a t e r 18 O - 16 O=3.99× 10 6 T 2-8.12× 10 3 T+2.35
式中:T为发生氧同位素分馏反应时的环境或体系温度,单位为K; α s e r p - w a t e r 18 O - 16 O为蛇纹石-水的18O-16O分馏系数。
SACCOCIA等[12]在实验室条件下通过部分交换技术确定了蛇纹石-水体系中的氧同位素分馏系数。其通过实验数据得到关于温度的回归函数方程,用于描述250~450 ℃(523~723 K)、50 MP下蛇纹石-水中的18O-16O分馏过程(假设反应流体的δ18O为0‰):
103ln α s e r p - w a t e r 18 O - 16 O=3.49× 10 6 T 2-9.48
FRÜH-GREEN等[39]也给出了蛇纹石-水的经验分馏公式:
103ln α s e r p - w a t e r 18 O - 16 O=1.51× 10 6 T 2-4.57
ZHENG[38]和SACCOCIA等[12]的分馏公式被普遍用于计算蛇纹石化过程中蛇纹石的形成温度。
目前氧同位素比值测定有多种方法,如氧同位素比值质谱法、二次离子探针、激光吸收光谱法等。氧同位素比值质谱法(isotope ratio mass spectrometry, IRMS)是目前氧同位素测温的主要手段[40-41]。二次离子探针(secondary ion mass spectrometry, SIMS)是一种利用离子束来分析样品表面元素和同位素组成的方法,具有极高的空间分辨率和测量灵敏度,可以实现单矿物、单晶体甚至亚微米级别的氧同位素分析[42-43]。激光吸收光谱法(laser absorption spectroscopy, LAS)是一种近年来快速发展的氧同位素测温技术,该方法利用不同氧同位素在特定波长激光下的吸收特性,测量样品中氧同位素的吸收强度比值来反推氧同位素比值[44]

3 蛇纹石化过程中蛇纹石氧同位素组成的影响因素

蛇纹石化发生的温度-压力条件对控制蛇纹石化的进程具有重要影响。若要对蛇纹石化过程的温度进行准确测定,需要借助地质温度计,如氧同位素地质温度计或流体包裹体温度计等。在利用氧同位素对蛇纹石化过程测温研究中,前人的主要研究对象为蛇纹石[1-4,36-37,39,45],有如下两点原因:
第一,蛇纹石作为蛇纹石化过程最主要的蚀变产物,在次生矿物中占比很高。SNOW等[46]发现经历了蛇纹石化过程的深海橄榄岩次生矿物含量为80%~100%,而通过镜下观察发现蛇纹石在次生矿物中的占比高达70%~90%。另外,蛇纹石具有明显的网脉结构,易于识别。因此相较于其他次生矿物,蛇纹石样品更容易取得。
第二,蛇纹石在形成过程中涉及到大量的流体参与(通常是海水)。通过蛇纹石中的氧同位素信息,可以得到蛇纹石化过程的温度和反应流体的信息。由于蛇纹石中的氧主要来源于海水,而水的氧同位素组成受温度影响较大,所以通过蛇纹石氧同位素反应出来的温度信息可信度较高。

3.1 反应温度和流体氧同位素组成对蛇纹石氧同位素组成的影响

在蛇纹石化过程中,蛇纹石由橄榄石蚀变而来,因此蛇纹石的氧同位素组成(δ18Oserp)与橄榄石和流体的氧同位素组成及分馏有关[36]。蛇纹石氧同位素比值随反应温度升高而降低(图1)。
图1 蛇纹石δ18O值随反应温度变化曲线

(反应曲线为不同流体端元的模拟结果,其中大西洋洋底流体为大西洋中脊23°N Kane地区的热液流体[48]。分馏公式来自SACCOCIA等[12] 。)

Fig.1 The change curve of δ18O value of serpentine with temperature

(The curve is generated based on different fluid endmembers, in which the Atlantic Ocean fluid is from the Kane area at the Mid-Atlantic Ridge 23°N[48]. The fractionation formula is from SACCOCIA et al[12].)

若根据SACCOCIA等[12]的分馏公式,取原生橄榄石平均δ18O值为5.5‰[47],当反应流体为海水时,水岩反应的阈值温度约为210 ℃,当蛇纹石化反应温度低于210 ℃时,δ18Oserp值大于5.5‰,当反应温度高于210 ℃时,δ18Oserp值小于5.5‰。当反应流体为大西洋中脊23°N Kane地区热液流体[48],所需的温度阈值更高(约255 ℃)。当反应流体为现代印度洋底层水[49],情况与海水相似,所需的温度阈值略低。因此流体氧同位素组成对蛇纹石的氧同位素组成具有重要影响。同时,对于同一流体,不同温度会显著改变蛇纹石的氧同位素组成。

3.2 水岩比对蛇纹石氧同位素组成的影响

当水岩比较高时,蛇纹石的氧同位素组成被流体的氧同位素组成所主导。在这种情况下,蛇纹石的氧同位素比值可以直接反映反应温度。当水岩比较低时,蛇纹石的氧同位素组成由原岩(主要指橄榄石和辉石)的氧同位素组成所主导。在这种情况下,蛇纹石的氧同位素比值更接近于原岩。
SACCOCIA等[12]是在水岩比大于6的情况下对蛇纹石氧同位素分馏系数进行的测量,所以通过SACCOCIA等[12]的分馏公式讨论蛇纹石化过程中蛇纹石的形成温度时,需要保证所测样品的水岩比在一个合适的范围内。网脉区域低水岩比的蛇纹石,并不适合用氧同位素温度计计算其形成温度;而由流体沉淀形成的蛇纹石脉体则对应于高水岩比,符合使用氧同位素温度计计算反应温度的条件。

3.3 系统封闭条件对蛇纹石氧同位素组成的影响

TAYLOR[10]对反应系统中水岩比、矿物δ18O值和反应温度之间的关系进行了量化。TAYLOR[10]在其模型中考虑了两种极端情况,一种为开放系统,初始δ18Ofluid一直保持不变,其公式为
$ \mathrm{W} / \mathrm{R}=\log _{\mathrm{e}}\left[\frac{\delta^{18} \mathrm{O}_{\text {fluid }}+\Delta-\delta^{18} \mathrm{O}_{\text {oli }}}{\delta^{18} \mathrm{O}_{\text {fluid }}-\left(\delta^{18} \mathrm{O}_{\text {serp }}-\Delta\right)}\right]$
式中:W/R为水岩比,δ18Ofluid代表水岩反应中反应流体的氧同位素比值,δ18Ooli代表初始反应物橄榄石的氧同位素比值,δ18Oserp代表最终反应物蛇纹石的氧同位素比值,Δ=δ18Oserp-δ18Ofluid≈103ln α s e r p - w a t e r 18 O - 16 O=3.49× 10 6 T 2-9.48(以SACCOCIA等[12]的氧同位素分馏公式为例)。
另一种为封闭系统,初始δ18Ofluid在反应系统中保持循环和再平衡状态:
W/R= δ 18 O s e r p - δ 18 O o l i δ 18 O f l u i d - ( δ 18 O s e r p - Δ )
通过TAYLOR[10]的公式对蛇纹石形成温度下的水岩比和δ18Oserp的关系进行了描述(图2,图中以实际深海橄榄岩样品所测的数据为例,输入条件为δ18Ofluid=-0.18‰、t=262.3 ℃,初始橄榄石δ18O值为5.5‰)。结果表明,在开放系统中,δ18Oserp在水岩比约为10时达到其下限,而在封闭系统中水岩比需要更高(100~200),δ18Oserp才能达到其下限。曲线也表明在恒定温度和δ18Ofluid条件下,样品中测得的δ18O值降低可以用水岩比增加来解释,在这种情况下,蛇纹石的网状结构将在水岩比为0.1~1时形成,蛇纹石脉体在水岩比大于1时形成,这与按化学计量将新鲜橄榄岩转化为蛇纹石所需的最小水岩比(0.13)[10]一致。
图2 反应系统封闭条件对蛇纹石δ18O值的影响

Fig.2 The impact of the closure conditions of the reaction system on the δ18O value of serpentine

4 氧同位素在橄榄岩蛇纹石化过程研究中的应用

氧同位素测试作为一种重要的研究手段,在地质学中被广泛应用。通过氧同位素分析可以推测古气候的变化情况和古大气温度、湿度和降雨量等[7-8,50-52]。在岩石学和矿床学中,氧同位素测温法被用来推断矿物的形成温度、源区的氧同位素组成以及描述流体参与的成矿过程[5,9,39,53-55]。也有学者通过氧同位素对微区矿物的氧同位素组成进行研究[56-61]
具体到氧同位素在橄榄岩蛇纹石化中的应用,通过测试氧同位素,可以估计橄榄岩蛇纹石化过程的反应温度[12,36-37,44]。早在20世纪70年代,人们就已经建立了一个近似的蛇纹岩-磁铁矿地温计曲线,表明不同类型矿物的反应温度范围:大陆型利蛇纹石-纤蛇纹石为85~115 ℃,叶蛇纹石为220~460 ℃;大洋型利蛇纹石-纤蛇纹石为130~185 ℃,叶蛇纹石为235 ℃[36]。前人对大西洋脊15°20'N断层带附近的蛇纹岩进行氧、氢和氯同位素分析表明,该区域蛇纹石化峰值温度为300~500 ℃[6]。ROUMÉJON等[45]对大西洋中脊(30°N)的亚特兰蒂斯基性-超基性岩体和西南印度洋脊(62°E—65°E) 的蚀变橄榄岩样品进行原位氧同位素分析,表明两个区域的蛇纹石化温度在260~290 ℃(海水主导的流体假设)或320~360 ℃(热液改造海水假设)之间。SCICCHITANO[5]通过SIMS对Chenaillet蛇纹岩石中变质碳酸盐岩的氧同位素与碳同位素进行分析,其结果显示至少存在四个不同的热液蚀变阶段。基于前人研究,总结了蛇纹石化橄榄岩的典型次生矿物的氧同位素组成及形成温度如表1所示。
表1 蛇纹石化橄榄岩次生矿物氧同位素比值和形成温度

Tab.1 Oxygen isotope ratios of the secondary minerals in serpentinized peridotites and their formation temperatures

矿物
种类
δ18O/‰ 形成温度
温度范围/℃ 参考文献
蛇纹石 1.9~9.6 (106) 300~320 (利蛇纹石)
320~550 (叶蛇纹石)
文献[23,36]
磁铁矿 -10.2~4.75 (92) 400~450 文献[44,11]
滑石 3.0~4.7 (11) 272~323 文献[62]
透闪石 5.2~8.0 (8) 350~650 文献[23,63-67]
方解石 12.67~34.1 (103) 2~134 文献[68]
绿泥石 1.12~11.7 (24) 169~207 文献[62]

注:表格中括号内数字代表参考样品的数目,氧同位素比值数据来自PetDB。

5 氧同位素测温法的优势和局限

氧同位素测温法在蛇纹石化橄榄岩中运用的优势远胜于其他测温方法。大部分矿物组合温度计仅对变质岩适用,对水岩反应产生的蚀变岩石不适用。有学者在方辉橄榄岩、二辉橄榄岩和单斜辉石岩捕虏体中应用了尖晶石-橄榄石 Mg同位素地质温度计[69],但尖晶石和橄榄石之间的Mg同位素平衡分馏能否发展成为一种适用的地质温度计,目前存在争议[70],且大部分蚀变严重的橄榄岩中原生橄榄石几乎消耗殆尽。单矿物微量元素温度计,如金红石Zr和锆石Ti含量地质温度计,测温准确性不仅受到退变反应的影响,还会受到矿物的生长世代或生长介质的影响[71]。而使用流体包裹体组合测温则需要样品中存在一组同时被捕获的流体包裹体组合,且组合内包裹体测温数据不能有太大偏差才能适用[72]。与上述方法相比,氧同位素不仅测试精度高且适用于各种类型的地质体系,尤为适用于流体-岩石反应系统,且不受矿物种类和世代、矿物结构、元素含量等因素的限制,具有较高的适用性。
尽管氧同位素测温法在地质学中有广泛的应用,但是也存在一些局限性。例如,氧同位素比值可能受到后期地质过程(如变质、风化等)的影响,这可能会使得测定的温度与实际的形成温度存在一定的偏差[73]。此外,氧同位素比值还可能受到源区成分和氧同位素组成的影响[74]。因此,在使用氧同位素进行测温时,需要考虑来自多方面因素的影响,以便更准确地推断温度条件。

6 结语

本研究主要讨论了氧同位素测温法在深海橄榄岩蛇纹石化过程中的应用,对氧同位素测温法的原理、深海橄榄岩蛇纹石化过程、氧同位素测温法在深海橄榄岩蛇纹石化过程中的应用案例、氧同位素在蛇纹石化过程中的影响因素以及氧同位素的优势和局限性进行了详细讨论,可为后续更深入地了解深海橄榄岩蛇纹石化过程提供一定的参考。
[1]
ALT J C, SHANKS III W C. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling[J]. Geochimica et Cosmochimica Acta, 2003, 67(4): 641-653.

[2]
MÉVEL C. Serpentinization of abyssal peridotites at mid-ocean ridges[J]. Comptes Rendus Géoscience, 2003, 335(10/11): 825-852.

[3]
KELEMEN P B, MATTER J. In situ carbonation of peridotite for CO2 storage[J]. Proceedings of the National Academy of Sciences, 2008, 105(45): 17295-17300.

[4]
BACH W, KLEIN F. The petrology of seafloor rodingites: Insights from geochemical reaction path modeling[J]. Lithos, 2009, 112(1/2): 103-117.

[5]
SCICCHITANO M R, LAFAY R, VALLEY J W, et al. Protracted hydrothermal alteration recorded at the microscale in the Chenaillet ophicarbonates(Western Alps):Insights from in situ δ18O thermometry in serpentine,carbonate and magnetite[J]. Geochimica et Cosmochimica Acta, 2022, 318: 144-164.

[6]
BARNES J D, PAULICK H, SHARP Z D, et al. Stable isotope (δ18O, δD, δ37Cl) evidence for multiple fluid histories in mid-Atlantic abyssal peridotites (ODP Leg 209)[J]. Lithos, 2009, 110(1/2/3/4): 83-94.

[7]
LITTLER K, RÖHL U, WESTERHOLD T, et al. A high-resolution benthic stable-isotope record for the South Atlantic: Implications for orbital-scale changes in Late Paleocene-Early Eocene climate and carbon cycling[J]. Earth and Planetary Science Letters, 2014, 401: 18-30.

[8]
DE VLEESCHOUWER D, VAHLENKAMP M, CRUCIFIX M, et al. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y.[J]. Geology, 2017, 45(4): 375-378.

[9]
NOËL J, GODARD M, OLIOT E, et al. Evidence of polygenetic carbon trapping in the Oman Ophiolite: Petro-structural, geochemical, and carbon and oxygen isotope study of the Wadi Dima harzburgite-hosted carbonates (Wadi Tayin massif, Sultanate of Oman)[J]. Lithos, 2018, 323: 218-237.

[10]
TAYLOR H P Jr. Water/rock interactions and the origin of H2O in granitic batholiths[J]. Journal of the Geological Society, 1977, 133(6): 509-558.

[11]
AGRINIER P, CANNAT M. Oxygen-isotope constraints on serpentinization processes in ultramafic rocks from the Mid-Atlantic Ridge (23°N)[M] //KARSONJ A, CANNATM, MILLERD J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 153, 1997: 381-388.

[12]
SACCOCIA P J, SEEWALD J S, SHANKS III W C. Oxygen and hydrogen isotope fractionation in serpentine-water and talc-water systems from 250 to 450 ℃, 50MPa[J]. Geochimica et Cosmochimica Acta, 2009, 73(22): 6789-6804.

[13]
DICK H J B. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism[M] //SAUNDERSA D, NORRYM J. Magmatism in the ocean basins. London: Geological Society Special Publications, 1989: 71-105.

[14]
余星, 初凤友, 陈汉林, 等. 深海橄榄岩蛇纹石化作用的研究进展[J]. 海洋学研究, 2011, 29(1):96-103.

YU X, CHU F Y, CHEN H L, et al. Advances in research of abyssal peridotite serpentinization[J]. Journal of Marine Sciences, 2011, 29(1): 96-103.

[15]
章钰桢, 姜兆霞, 李三忠, 等. 大洋橄榄岩的蛇纹石化过程:从海底水化到俯冲脱水[J]. 岩石学报, 2022, 38(4):1063-1080.

ZHANG Y Z, JIANG Z X, LI S Z, et al. The process of oceanic peridotite serpentinization: From seafloor hydration to subduction dehydration[J]. Acta Petrologica Sinica, 2022, 38(4): 1063-1080.

[16]
BACH W, PAULICK H, GARRIDO C J, et al. Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274)[J]. Geophysical Research Letters, 2006, 33(13): L13306.

[17]
MALVOISIN B, BRUNET F, CARLUT J, et al. Serpenti-nization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4):B04102.

[18]
CANNAT M, MANGENEY A, ONDRÉAS H, et al. High-resolution bathymetry reveals contrasting landslide activity shaping the walls of the Mid-Atlantic Ridge axial valley[J]. Geochemistry Geophysics Geosystems, 2013, 14(4): 996-1011.

[19]
HARVEY J, SAVOV I P, AGOSTINI S, et al. Si-metasomatism in serpentinized peridotite: The effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209[J]. Geochimica et Cosmochimica Acta, 2014, 126: 30-48.

[20]
FACER J, DOWNES H, BEARD A. In situ serpentinization and hydrous fluid metasomatism in spinel dunite xenoliths from the Bearpaw Mountains, Montana, USA[J]. Journal of Petrology, 2009, 50(8): 1443-1475.

[21]
GUILLOT S, HATTORI K. Serpentinites: Essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life[J]. Elements, 2013, 9(2): 95-98.

[22]
CORTIADE N, DELACOUR A, GUILLAUME D, et al. Serpentinization of mantle xenoliths in Kerguelen archipelago: A first petrographic and geochemical study[J]. Lithos, 2022, 428/429: 106796.

[23]
DESCHAMPS F, GODARD M, GUILLOT S, et al. Geoche-mistry of subduction zone serpentinites: A review[J]. Lithos, 2013, 178: 96-127.

[24]
EVANS B W, HATTORI K, BARONNET A. Serpentinite: What, why, where?[J]. Elements, 2013, 9(2): 99-106.

[25]
BOSCHI C, DINI A, BANESCHI I, et al. Brucite-driven CO2 uptake in serpentinized dunites (Ligurian Ophiolites, Montecastelli, Tuscany)[J]. Lithos, 2017, 288/289: 264-281.

[26]
KELEMEN P B, MATTER J, STREIT E E, et al. Rates and mechanisms of mineral carbonation in peridotite: Natural processes and recipes for enhanced, in situ CO2 capture and storage[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 545-576.

[27]
STRAUB S M, LAYNE G D. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones[J]. Geochimica et Cosmochimica Acta, 2003, 67(21): 4179-4203.

[28]
HATTORI K H, GUILLOT S. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge[J]. Geology, 2003, 31(6): 525-528.

[29]
RUDNICK R L, GAO S. Composition of the continental crust[M] //HOLLANDH D, TUREKIANK K. Treatise on Geochemistry. Amsterdam: Elsevier, 2003: 1-64.

[30]
LI C S, RIPLEY E M. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits[J]. Mineralium Deposita, 2005, 40(2): 218-230.

[31]
TULI J K. Nuclear wallet cards[M]. [S.l.]: Brookhaven National Laboratory, 1995.

[32]
刘耘. 非传统稳定同位素分馏理论及计算[J]. 地学前缘, 2015, 22(5):1-28.

LIU Y. Theory and computational methods of non-traditional stable isotope fractionation[J]. Earth Science Frontiers, 2015, 22(5): 1-28.

[33]
韩吟文, 马振东. 地球化学[M]. 北京: 地质出版社, 2003.

HAN Y W, MA Z D. Geochemistry[M]. Beijing: Geological Publishing House, 2003.

[34]
HOEFS J. Stable isotope geochemistry[M]. Berlin: Springer, 1997.

[35]
CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.

[36]
HAYES J M. Practice and principles of isotopic measurements in organic geochemistry[Z/OL]. [2023-03-25]. https://web.gps.caltech.edu/-als/research-articles/other_stuff/hayespnp.pdf.

[37]
WENNER D B, TAYLOR H P. Temperatures of serpenti-nization of ultramafic rocks based on O18/O16 fractionation between coexisting serpentine and magnetite[J]. Contributions to Mineralogy and Petrology, 1971, 32(3): 165-185.

[38]
ZHENG Y F. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates[J]. Earth and Planetary Science Letters, 1993, 120(3/4): 247-263.

[39]
FRÜH-GREEN G L, PLAS A, LÉCUYER C. Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at Hess Deep(site 895)[M] //MÉVELC, GILLISK M, ALLANJ F, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Vol.147, 1996: 255-291.

[40]
SCHWARZENBACH E M, VOGEL M, FRÜH G G L, et al. Serpentinization, carbonation, and metasomatism of ultramafic sequences in the northern Apennine ophiolite (NW Italy)[J]. Journal of Geophysical Research Solid Earth, 2021, 126(5): e2020JB020619.

[41]
GIL G, BOROWSKI M P, BARNES J D, et al. Formation of serpentinite-hosted talc in a continental crust setting: Petrographic, mineralogical, geochemical, and O, H and Cl isotope study of the Gilów deposit, Góry Sowie Massif (SW Poland)[J]. Ore Geology Reviews, 2022, 146:104926.

[42]
SCICCHITANO M R, SPICUZZA M J, ELLISON E T, et al. In situ oxygen isotope determination in serpentine minerals by SIMS: Addressing matrix effects and providing new insights on serpentinisation at hole BA1B (Samail ophiolite, Oman)[J]. Geostandards and Geoanalytical Research, 2021, 45(1): 161-187.

[43]
SCICCHITANO M R, DE OBESO J C, BLUM T B, et al. An empirical calibration of the serpentine-water oxygen isotope fractionation at T=25-100℃[J]. Geochimica et Cosmochimica Acta, 2023, 346: 192-206.

[44]
TROCH J, AFFOLTER S, HARRIS C, et al. Oxygen and hydrogen isotope analysis of experimentally generated magmatic and metamorphic aqueous fluids using laser spectroscopy (WS-CRDS)[J]. Chemical Geology, 2021, 584: 120487.

[45]
ROUMÉJON S, WILLIAMS M J, FRÜH G G L. In-situ oxygen isotope analyses in serpentine minerals: Constraints on serpentinization during tectonic exhumation at slow- and ultraslow-spreading ridges[J]. Lithos, 2018, 323: 156-173.

[46]
SNOW E S, CAMPBELL P M. AFM fabrication of sub-10-nanometer metal-oxide devices with in situ control of electrical properties[J]. Science, 1995, 270(5242): 1639-1641.

[47]
EILER J, STOLPER E M, MCCANTA M C. Intra-and intercrystalline oxygen isotope variations in minerals from basalts and peridotites[J]. Journal of Petrology, 2011, 52(7/8): 1393-1413.

[48]
CAMPBELL A C, PALMER M R, KLINKHAMMER G P, et al. Chemistry of hot springs on the Mid-Atlantic Ridge[J]. Nature, 1988, 335(6190): 514-519.

[49]
SCHMIDT G A, BIGG G R, ROHLING E J. Global seawater oxygen-18 database[EB/OL]. [2023-04-10]. http://data.giss.nasa.gov/o18data/.

[50]
姜兆霞, 刘青松. 赤铁矿的定量化及其气候意义[J]. 第四纪研究, 2016, 36(3):676-689.

JIANG Z X, LIU Q S. Quantification of hematite and its climatic significances[J]. Quaternary Sciences, 2016, 36(3): 676-689.

[51]
李彬, 袁道先, 林玉石, 等. 桂林地区降水、洞穴滴水及现代洞穴碳酸盐氧碳同位素研究及其环境意义[J]. 中国科学:D辑, 2000, 30(1):81-87.

LI B, YUAN D X, LIN Y S, et al. Study on oxygen and carbon isotopes of precipitation, cave dripping and modern cave carbonate in Guilin area and its environmental significance[J]. Science in China: Series D, 2000, 30(1): 81-87.

[52]
程海, 艾思本, 王先锋, 等. 中国南方石笋氧同位素记录的重要意义[J]. 第四纪研究, 2005, 25(2):157-163.

CHENG H, AI S B, WANG X F, et al. Oxygen isotope records of stalagmites from southern China[J]. Quaternary Sciences, 2005, 25(2): 157-163.

[53]
毛景文, 赫英, 丁悌平. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J]. 矿床地质, 2002, 21(2):121-128.

MAO J W, HE Y, DING T P. Mantle fluids involved in metallogenesis of Jiaodong (east Shandong) gold district: Evidence of C, O and H isotopes[J]. Mineral Deposits, 2002, 21(2): 121-128.

[54]
郑永飞, 傅斌, 肖益林, 等. 大别山榴辉岩氢氧同位素组成及其地球动力学意义[J]. 中国科学:D辑, 1997, 27(2):121-126.

ZHENG Y F, FU B, XIAO Y L, et al. Hydrogen and oxygen isotopic composition of eclogite in Dabie Mountain and its geodynamic significance[J]. Science in China: Series D, 1997, 27(2): 121-126.

[55]
郑永飞, 陈福坤, 龚冰, 等. 大别-苏鲁造山带超高压变质岩原岩性质:锆石氧同位素和U-Pb年龄证据[J]. 科学通报, 2003, 48(2):110-119.

ZHENG Y F, CHEN F K, GONG B, et al. Protolith properties of ultrahigh-pressure metamorphic rocks in the Dabie-Sulu orogenic belt: Evidence from zircon oxygen isotopes and U-Pb ages[J]. Chinese Science Bulletin, 2003, 48(2): 110-119.

[56]
SPICUZZA M J, VALLEY J W, KOHN M J, et al. The rapid heating, defocused beam technique: A CO2-laser-based method for highly precise and accurate determination of δ18O values of quartz[J]. Chemical Geology, 1998, 144(3/4): 195-203.

[57]
FIEBIG J, WIECHERT U, RUMBLE D III, et al. High-precision in situ oxygen isotope analysis of quartz using an ArF laser[J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 687-702.

[58]
CHAMBERLAIN C P, CONRAD M E. Oxygen-isotope zoning in garnet: A record of volatile transport[J]. Geochi-mica et Cosmochimica Acta, 1993, 57(11): 2613-2629.

[59]
VALLEY J W, CHIARENZELLI J R, MCLELLAND J M. Oxygen isotope geochemistry of zircon[J]. Earth and Planetary Science Letters, 1994, 126(4): 187-206.

[60]
EILER J M, FARLEY K A, VALLEY J W, et al. Oxygen isotope variations in ocean island basalt phenocrysts[J]. Geochimica et Cosmochimica Acta, 1997, 61(11): 2281-2293.

[61]
CRESPIN J, ALEXANDRE A, SYLVESTRE F, et al. IR laser extraction technique applied to oxygen isotope analysis of small biogenic silica samples[J]. Analytical Chemistry, 2008, 80(7): 2372-2378.

[62]
DEKOV V M, CUADROS J, SHANKS W C, et al. Deposition of talc-kerolite-smectite-smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies[J]. Chemical Geology, 2008, 247(1/2): 171-194.

[63]
JENKINS D M. Stability and composition relations of calcic amphiboles in ultramafic rocks[J]. Contributions to Mineralogy and Petrology, 1983, 83: 375-384.

[64]
CHERNOSKY J V, BERMAN R G, JENKINS D M. The stability of tremolite: New experimental data and a thermodynamic assessment[J]. American Mineralogist, 1998, 83(7/8): 726-739.

[65]
EVANS B W. The serpentinite multisystem revisited: Chrysotile is metastable[J]. International Geology Review, 2004, 46(6): 479-506.

[66]
EVANS B W, GHIORSO M S, KUEHNER S M. Thermo-dynamic properties of tremolite: A correction and some comments[J]. American Mineralogist, 2000, 85(3/4): 466-472.

[67]
CLUZEL D, BOULVAIS P, ISEPPI M, et al. Slab-derived origin of tremolite-antigorite veins in a supra-subduction ophiolite: the peridotite Nappe (New Caledonia) as a case study[J]. International Journal of Earth Sciences, 2020, 109: 171-196.

[68]
CHEN Y, HAN X Q, WANG Y J, et al. Precipitation of calcite veins in serpentinized harzburgite at Tianxiu hydrothermal field on Carlsberg Ridge (3.67°N), northwest Indian Ocean: Implications for fluid circulation[J]. Journal of Earth Science, 2020, 31(1): 91-101.

[69]
LIU S A, TENG F Z, YANG W, et al. High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China Craton[J]. Earth and Planetary Science Letters, 2011, 308(1/2): 131-140.

[70]
刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3):399-424.

LIU J W, TIAN S H, WANG L. Application of magnesium stable isotopes for studying important geological processes—a review[J]. Earth Science Frontiers, 2023, 30(3): 399-424.

[71]
高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 27(2):417-432.

GAO X Y, ZHENG Y F. On the Zr-in-rutile and Ti-in-zircon geothermometers[J]. Acta Petrologica Sinica, 2011, 27(2): 417-432.

[72]
池国祥, 卢焕章. 流体包裹体组合对测温数据有效性的制约及数据表达方法[J]. 岩石学报, 2008, 24(9):1945-1953.

CHI G X, LU H Z. Validation and representation of fluid inclusion microthermometric data using the fluid inclusion assemblage (FIA) concept[J]. Acta Petrologica Sinica, 2008, 24(9): 1945-1953.

[73]
BINDEMAN I N, PONOMAREVA V V, BAILEY J C, et al. Volcanic arc of Kamchatka: A province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust[J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 841-865.

[74]
EILER J M. Oxygen isotope variations of basaltic lavas and upper mantle rocks[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 319-364.

Outlines

/