环境垂直风切变对0509号台风“麦莎”的影响分析

李瑞, 李本亮, 胡鹏, 梁永礼, 刘爱梅

海洋学研究 ›› 2014, Vol. 32 ›› Issue (2) : 14-22.

PDF(2808 KB)
PDF(2808 KB)
海洋学研究 ›› 2014, Vol. 32 ›› Issue (2) : 14-22. DOI: 10.3969/j.issn.1001-909X.2014.02.002
研究论文

环境垂直风切变对0509号台风“麦莎”的影响分析

  • 李瑞, 李本亮, 胡鹏, 梁永礼, 刘爱梅
作者信息 +

Effects of environmental vertical wind shear on Typhoon Matsa (0509)

  • LI Rui, LI Ben-liang, HU Peng, LIANG Yong-li, LIU Ai-mei
Author information +
文章历史 +

摘要

利用多种卫星观测资料和NCEP/NCAR提供的风场资料等,分析了环境垂直风切变对0509号台风“麦莎”的强度、对流和降水结构的影响。结果表明:在台风“麦莎”整个生命史中,垂直风切变与其强度之间关系非常密切,但垂直风切变不是影响其强度变化的唯一因素;“麦莎”登陆前及登陆后在垂直风切变作用下,强对流和强降水均位于顺切变方向及其左侧,对流和降水呈1阶非对称分布。

Abstract

The effects of environmental vertical wind shear (VWS) on the intensity, convection and precipitation asymmetries in Typhoon Matsa (0509) were analyzed based on the satellite observation data from various sources and NCEP/NCAR reanalysis wind. The results show that before and after Matsa's landfall, there is very close relationship between the VWS and Matsa's intensity, but the VWS is not a sole factor for Matsa's intensity variability. The VWS has a great impact on the asymmetric distribution of Matsa's convection and precipitation before and after its landfall. Heavy convection and rainfall generally occurr downshear to downshear-left of the VWS vector, showing a strong wavenumber-1 asymmetry.

关键词

台风“麦莎” / 强度 / 对流和降水结构 / 环境垂直风切变

Key words

Typhoon Matsa / intensity / convection and precipitation structures / environmental vertical wind shear

引用本文

导出引用
李瑞, 李本亮, 胡鹏, 梁永礼, 刘爱梅. 环境垂直风切变对0509号台风“麦莎”的影响分析[J]. 海洋学研究. 2014, 32(2): 14-22 https://doi.org/10.3969/j.issn.1001-909X.2014.02.002
LI Rui, LI Ben-liang, HU Peng, LIANG Yong-li, LIU Ai-mei. Effects of environmental vertical wind shear on Typhoon Matsa (0509)[J]. Journal of Marine Sciences. 2014, 32(2): 14-22 https://doi.org/10.3969/j.issn.1001-909X.2014.02.002
中图分类号: P444   

参考文献

[1] MCBRIDE J L, ZEHR R. Observational analysis of tropical cyclone formation Part Ⅱ: comparison of non-developing versus developing systems[J]. Journal of the Atmospheric Sciences,1981,38(6):1 132-1 151.
[2] MERRILL R T. Environmental influences on hurricane intensification[J]. Journal of the Atmospheric Sciences,1988,45(11):1 678-1 687.
[3] DEMARIA M. The effect of vertical wind shear on tropical cyclone intensity change[J]. Journal of the Atmospheric Sciences,1996,53(14):2 076-2 088.
[4] EMANUEL K, DESAUTELS C, HOLLOWAY C, et al. Environmental control of tropical cyclone intensity[J]. Journal of the Atmospheric Sciences,2004,61(7):843-858.
[5] WONG M L M , CHAN J C L. Tropical cyclone intensity in vertical wind shear[J]. Journal of the Atmospheric Sciences,2004,61(7):1 859-1 876.
[6] ZHAO Bin, DUAN Yi-hong, YU Hui, et al. A Statistical analysis on the effect of vertical wind shear on tropical cyclone development [J]. Acta Meteorologica Sinica,2006,20(3):383-388.
[7] GRAY W M. The mutual variation of wind, shear and baroclinicity in the cumulus convective atmosphere of the hurricane[J]. Monthly Weather Review,1967,95(2):55-73.
[8] GALINA G M, VELDEN C S. Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information[C]//American Meteorological Society. 25th Conf on Hurricanes and Tropical Meteorology. San Diego, USA: American Meteorological Society,2002:172-173.
[9] BLACK M L, GAMACHE J, MARKS F, et al. Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity[J]. Monthly Weather Review,2002,130(9):2 291-2 312.
[10] CEIL D J. Satellite-derived rain rates in vertically sheared tropical cyclones[J]. Geophysical Research Letters,2007,34(2):L02811,doi:10.1029/2006GL027942.
[11] WINGO M T, CECIL D. Effects of vertical wind shear on tropical cyclone precipitation[J]. Monthly Weather Review,2010,138(3):645-662.
[12] ZHANG D L, KIEU C Q. Potential vorticity diagnosis of a simulated hurricane. Part Ⅱ: quasi-balanced contributions to forced secondary circulations[J]. Journal of the Atmospheric Sciences,2006,63(11):2 898-2 914.
[13] FRANKLIN J L, STEPHEN J L, STEVEN E F, et al. The kinematic structure of hurricane Gloria(1985) determined from nested analyses of dropwindsonde and Doppler radar data[J]. Monthly Weather Review,1993,121(9):2 433-2 451.
[14] CORBOSIERO K L, MOLINARI J. The effects of vertical wind shear on the distribution of convection in tropical cyclones[J]. Monthly Weather Review,2002,130(8):2 110-2 123.
[15] CHEN S S, KNAFF J A, MARKS F D . Effect of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM[J]. Monthly Weather Review,2006,134(11):3 190-3 208.
[16] JONES S C. The evolution of vortices in vertical shear,Ⅱ:Initially barotropic vortices[J]. Quarterly Journal of the Royal Meteorological Society,1995,121(524):821-851.
[17] JONES S C. The evolution of vortices in vertical shear, Ⅱ: Large-scale asymmetries[J]. Quarterly Journal of the Royal Meteorological Society,2000,126(570):3 137-3 159.
[18] FRANK W M, RITCHIE E A. Effects of environmental flow upon tropical cyclone structure[J]. Monthly Weather Review,1999,127(9):2 044-2 061.
[19] FRANK W M, RITCHIE E A. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes[J]. Monthly Weather Review,2001,129(9):2 249-2 269.
[20] DEMARIA M, KAPLAN J. A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin[J]. Weather and Forecasting,1994,9(2):209-220.
[21] DEMARIA M, KAPLAN J. An updated statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic and eastern north Pacific basins[J]. Weather and Forecasting,1999,14(3):326-337.
[22] KNAFF J A, SAMPSON C R, DEMARIA M. An operational statistical typhoon intensity prediction scheme for the Western North Pacific[J]. Weather and Forecasting,2005,20(4):688-699.
[23] LONFAT M, ROGERS R, MARCHOK T, et al. A parametric model for predicting hurricane rainfall[J]. Monthly Weather Review,2007,135(9):3 086-3 097.
[24] FU Bing-shan, YUE Yan-xia, LI Guo-cui. TBB data processing and application[J]. Meteorological,2006,32(2):40-45.
傅昺珊,岳艳霞,李国翠.TBB资料的处理及应用[J].气象,2006,32(2):40-45.
[25] YOU Jing-yan, DUAN Ying, YOU Lai-guang. Research on cloud and precipitation physics and precipitation enhancement techniques[M]. Beijing: China Meteorological Press,1994:202-205.
游景炎,段英,游来光.云降水物理和人工增雨技术研究[M].北京:气象出版社,1994:202-205.
[26] JOANNE S, ROBERT F A, GERALD R N. A proposed tropical rainfall measuring mission(TRMM) satellite[J]. Bulletin of the American Meteorological Society,1988,69(3):278-295.
[27] LÜ Yan-bin, GU Lei, LI Ya-ping, et al. Observation research for the measuring rainfall capacity of TRMM/TMI-85.5G based on the precipitation data during the heavy rain experiment in southern China[J]. Journal of Tropical Meteorology,2001,17(3):251-257.
吕艳彬,顾雷,李亚萍,等.用华南暴雨试验雨量资料对TRMM/TMI-85.5GHz测雨能力的考察[J].热带气象学报,2001,17(3):251-257.
[28] DING Wei-yu, CHEN Zi-tong. Using TRMM data to analyse the precipitation distributions of landfall tropic cyclones in Guangdong in 2002[J]. Journal of Applied Meteorological Science,2004,15(4):436-444.
丁伟钰,陈子通.利用TRMM资料分析2002年登陆广东的热带气旋降水分布特征[J].应用气象学报,2004,15(4):436-444.
[29] PATERSON L A, HANSTRUM B N, DAVIDSON N E. Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region[J].Monthly Weather Review,2005,133(12):3 644-3 660.
[30] PALMER C K, BARNES G M. The effect of vertical wind shear as diagnosed by the NCEP/NCAR reanalysis data on northeast Pacific hurricane intensity[C]//American Meteorological Society. 25th Conf on Hurricanes and Tropical Meteorology. San Diego, USA: American Meteorological Society,2002:122-123.
[31] SHI Neng, CHEN Jia-qi, TU Qi-pu. 4-phase climate change features in the last 100 years over China[J]. Acta Meteorologica Sinica,1995,53(4):531-539.
施能,陈家其,屠其璞.中国近100年来四个年代际的气候变化特征[J].气象学报,1995,53(4):531-539.
[32] CHAN J C L, DUAN Y H, SHAY L K. Tropical cyclone intensity change from a simple ocean-atmosphere coupled model[J]. Journal of the Atmospheric Sciences,2001,58(2):154-172.

基金

国家自然科学基金项目资助(40775060)

PDF(2808 KB)

Accesses

Citation

Detail

段落导航
相关文章

/