基于1996—2012年西北太平洋Argo剖面浮标盐度观测资料,利用合成分析方法研究了海表面盐度对台风的响应特征。结果表明海表面盐度对台风的响应具有明显的非对称性:台风过后其路径右侧的海表面盐度显著上升;左侧的则在R50内上升,R50外区域普遍下降。进一步分析显示台风强度、移动速度和海洋混合层深度对海表面盐度响应特征均有较大影响。强度大或移动缓慢的台风能造成大范围的海表面盐度上升;强度小或移动快速的台风只在路径右侧造成海表面盐度上升,左侧的则普遍下降。夏季(6-9月)台风过后,海表面盐度在混合层浅的区域普遍大幅上升,在混合层深的区域则在台风路径左右两侧2R50范围内小幅上升,在远离台风路径左侧区域下降。
Abstract
Based on sea surface salinity (SSS) observations from Argo profiling floats during 1996—2012, SSS response to typhoons was analyzed by a synthetic analytical method. The results show that there exists an apparent asymmetry in the SSS response to typhoons: the SSS on the right side of the track increases markedly, however on the left side,it increases within radius of 50 knots wind speed (R50) while decreases outside the R50. Further analyses indicate that intensity, translation speed of typhoon and ocean mixed layer depth all have significant impacts on the SSS response. Strong or slow moving typhoons can produce SSS rises in a large area, whereas SSS increases (decreases) on the right (left) side of the track during the period of weak or fast moving typhoons. In summer (Jun.-Sep.), SSS generally rises more in magnitude and area after the passage of typhoon in regions of shallow mixed layer than in deep one,where SSS rises slightly within radius of 2R50 and decreases on the left side far away from typhoon track.
关键词
海表面盐度 /
Argo 剖面浮标 /
台风 /
混合层深度
Key words
sea surface salinity /
Argo profiling floats /
typhoon /
mixed layer depth
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FISHER E L. Hurricanes and the sea-surface temperature field [J]. Journal of Meteorology,1958,15(3):328-333.
[2] LEIPPER D F. Observed ocean conditions and Hurricane Hilda [J]. Journal of the Atmospheric Sciences,1967,24(2):182-196.
[3] BRAND S. The effects on a tropical cyclone of cooler surface waters due to upwelling and mixing produced by a prior tropical cyclone[J]. Journal of Applied Meteorology,1971,10(5):865-874.
[4] PRICE J F. Upper ocean response to a hurricane[J]. Journal of Physical Oceanography,1981,11(2):153-175.
[5] PRICE J F, SANFORD T B, FORRISTALL G Z. Forced stage response to a moving hurricane[J]. Journal of Physical Oceanography,1994,24(2):233-260.
[6] LIN Yi-yi, LIU W T, WU C C, et al. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling[J]. Geophysical Research Letter,2003,30(3):1131:doi:10.1029/2002GL015674.
[7] VINCENT E M, LENGAIGNE M, VIALARD J, et al. Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones[J]. Journal of Geophysical Research,2012,117(C5):doi:10.1029/2011JC007705.
[8] SHAY L K, BLACK P G, MARIANO A J, et al. Upper ocean response to Hurricane Gilbert[J]. Journal of Geophysical Research,1992,97(C2):20 227-20 248.
[9] ZHENG Quan-an, LAI R J, HUANG N E, et al. Observation of ocean current response to 1998 Hurricane Georges in the Gulf of Mexico[J]. Acta Oceanologica Sinica,2006,25(1):1-14.
[10] KORTY R L, EMANUEL K A, SCOTT J R. Tropical cyclone-induced upper -ocean mixing and climate: Application to equable climates[J]. Journal of Climate,2008,21(4):638-654.
[11] LU Zhu-min, HUANG Rui-xing. The three-dimensional steady circulation in a homogenous ocean induced by a stationary hurricane[J]. Journal of Physical Oceanography,2010,40(7):1 441-1 457.
[12] SANFORD T B, PRICE J B, GIRTON J B. Upper ocean response to hurricane Frances (2004) observed by profiling EM-APEX floats[J]. Journal of Physical Oceanography,2011,41(6):1 041-1 056.
[13] SHI Wei, WANG Meng-hua. Satellite observations of asymmetrical physical and biological response to Hurricane Earl[J]. Geophysical Research Letter,2011,38(4):doi:10.1029/2010GL046574.
[14] LAU K M W, ZHOU Ya-ping. Observed recent trends in tropical cyclone rainfall over the North Atlantic and North Pacific[J]. Journal of Geophysical Research,2012,117(D3):doi:10.1029/2011JD016510.
[15] XU Dong-feng, LIU Zeng-hong, XU Xiao-hua, et al. The influence of typhoon on the sea surface salinity in the warm pool of the western Pacific[J]. Acta Oceanologica Sinica,2005,27(6):9-15.
许东峰,刘增宏,徐晓华,等.西北太平洋暖池区台风对海表盐度的影响[J].海洋学报,2005,27(6):9-15.
[16] KWON Y O, RISER S C. The ocean response to the hurricane and tropical storm in North Atlantic during 1997-1999[R]. School of Oceanography, University of Washington, USA,2003.
[17] LIU Zeng-hong, XU Jian-ping, ZHU Bo-kang, et al. The upper ocean response to tropical cyclones in the northwestern Pacific analyzed with Argo data[J]. Chinese Journal of Oceanology and Limnology,2007,25(2):123-131.
[18] JACOB S D, KOBLINSKY C J. Effects of precipitation on the upper-ocean response to a hurricane[J]. Monthly Weather Review,2007,35(2):207-225.
[19] TONG Ming-rong, LIU Zeng-hong, SUN Chao-hui, et al. Analysis of data quality control process of the ARGO profiling buoy[J]. Ocean Technology,2003,22(4):79-84.
童明荣,刘增宏,孙朝辉,等.ARGO剖面浮标数据质量控制过程剖析[J].海洋技术,2003,22(4):79-84.
[20] PARK J J, KWON Y O, PRICE J F. Argo array observation of ocean heat content changes induced by tropical cyclones in the north Pacific [J]. Journal of Geophysical Research,2011,116(C12):doi:10.1029/2011JC007165.
[21] HART R E, MAUE R N, WATSON M C. Estimating local memory of tropical cyclones through MPI anomaly evolution[J]. Monthly Weather Review,2007,135(12):3 990-4 005.
[22] BARNES S L. Mesoscale objective analysis using weighted time-series observations[R]. NOAA Technical Memorandum, National Severe Storms laboratory,1964.
基金
国家重点基础研究发展计划项目资助(2013CB430301);国家自然科学基金项目资助(41306024,41206002);国家海洋局第二海洋研究所基本科研业务费专项项目资助(JT1301)