台风威马逊入侵南海的路径分析

董航, 姜良红, 章向明, 周磊

海洋学研究 ›› 2016, Vol. 34 ›› Issue (1) : 1-7.

PDF(1959 KB)
PDF(1959 KB)
海洋学研究 ›› 2016, Vol. 34 ›› Issue (1) : 1-7. DOI: 10.3969/j.issn.1001-909X.2016.01.001
研究论文

台风威马逊入侵南海的路径分析

  • 董航1,2, 姜良红1,2, 章向明1,2, 周磊*1,2
作者信息 +

Analysis on the track of Typhoon Rammasun into the South China Sea

  • DONG Hang1,2, JIANG Liang-hong1,2, ZHANG Xiang-ming1,2, ZHOU Lei*1,2
Author information +
文章历史 +

摘要

1409号台风威马逊是自1973年以来登陆华南地区的最强台风,其在登陆前,临岸急剧增强。每年初夏,尽管南海的海洋环境有利于台风的增长,但是由于西太平洋副热带高压(以下简称副高)的引导作用,大部分台风路径会偏离南海。本文分析结果表明,在2014年初夏,副高的位置相对过去几十年的平均位置更偏向西南方,因此,台风威马逊在副高的引导下穿过菲律宾进入南海海域。南海的高温海水为其强度陡增提供了有利条件,威马逊在短短26 h内急剧增长为超强台风。前人研究结果显示,近些年来副高的位置明显向西延伸,如果这种西向延伸的趋势一直保持或者继续,那么在初夏可能会有更多的热带风暴进入南海并且得以加强,华南地区或将面临更多灾难性台风的袭击。

Abstract

Typhoon Rammasun was the strongest typhoon that hit the South China in the past 41 years since 1973. It increased rapidly over the South China Sea (SCS) before the landfall. In early summer, the SCS is warm enough to support the increase of a typhoon in every year. However, the Western Pacific Subtropical High (WPSH) which steers the trajectories of tropical storms in the western Pacific deviates most tropical storms from the SCS. But, recently, the WPSH experiences a westward extension. Analysis shows that WPSH in early summer of 2014 took a more southward and more westward position than it did in the past several decades. As a result, Typhoon Rammasun was guided into the SCS through Philippine, which was an uncommon tropical storm track in July. In the SCS, Typhoon Rammasun was nourished by the warm ocean and became a super typhoon within only 26 hours. As the implication of this study, if the westward extension of WPSH remains and continues, it is reasonable to expect that more tropical storms enter the warm SCS and get intensified in early summer. Consequently, the South China is likely to be more vulnerable to devastating typhoons.

关键词

超强台风 / 威马逊 / 南海 / 西太平洋副高 / 华南

Key words

super typhoon / Rammasun / South China Sea / Western Pacific Subtropical High / South China

引用本文

导出引用
董航, 姜良红, 章向明, 周磊. 台风威马逊入侵南海的路径分析[J]. 海洋学研究. 2016, 34(1): 1-7 https://doi.org/10.3969/j.issn.1001-909X.2016.01.001
DONG Hang, JIANG Liang-hong, ZHANG Xiang-ming, ZHOU Lei. Analysis on the track of Typhoon Rammasun into the South China Sea[J]. Journal of Marine Sciences. 2016, 34(1): 1-7 https://doi.org/10.3969/j.issn.1001-909X.2016.01.001
中图分类号: P444   

参考文献

[1] KAPLAN J, DEMARIA M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin[J]. Weather and Forecasting,2003,18(6):1 093-1 108.
[2] EMANUEL K, DESAUTELS C, HOLLOWAY C, et al. Environmental control of tropical cyclone intensity[J]. Journal of the Atmospheric Sciences,2004,61(7):843-858.
[3] EMANUEL K A. Thermodynamic control of hurricane intensity[J]. Nature,1999,401(6754):665-669.
[4] WEBSTER P J, HOLLAND G J, CURRY J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science,2005,309(5742):1 844-1 846.
[5] WONG M L M, CHAN J C L. Tropical cyclone intensity in vertical wind shear[J]. Journal of the Atmospheric Sciences,2004,61(15):1 859-1 876.
[6] CRAIG G C, GRAY S L. CISK or WISHE as the mechanism for tropical cyclone intensification[J]. Journal of the Atmospheric Sciences,1996,53(23):3 528-3 540.
[7] DEMARIA M. The effect of vertical shear on tropical cyclone intensity change[J]. Journal of the Atmospheric Sciences,1996,53(14):2 076-2 088.
[8] HOUZE R A, CHEN S S, SMULL B F, et al. Hurricane intensity and eyewall replacement[J]. Science,2007,315(5816):1 235-1 239.
[9] CAMARGO S J, SOBEL A H. Western North Pacific tropical cyclone intensity and ENSO[J]. Journal of Climate,2005,18(15):2 996-3 006.
[10] LIN I I, CHEN C-H, PUN I-F, et al. Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008)[J]. Geophysical Research Letters,2009,36(3):L03817.
[11] EMANUEL K A. An air-sea interaction theory for tropical cyclones. 1. Steady-state maintenance[J]. Journal of the Atmospheric Sciences,1986,43(6):585-604.
[12] WU C-C, LEE C-Y, LIN I I. The effect of the ocean eddy on tropical cyclone intensity[J]. Journal of the Atmospheric Sciences,2007,64(10):3 562-3 578.
[13] CHAN J C L, DUAN Y, SHAY L K. Tropical cyclone intensity change from a simple ocean-atmosphere coupled model[J]. Journal of the Atmospheric Sciences,2001,58(2):154-172.
[14] LIN I I, WU C-C, PUN I-F, et al. Upper-ocean thermal structure and the Western North Pacific category 5 typhoons. Part I: ocean features and the category 5 typhoons' intensification[J]. Monthly Weather Review,2008,136(9):3 288-3 306.
[15] CHU J-H, SAMPSON C R, LEVINE A S, et al. The joint typhoon warning center tropical cyclone best-tracks, 1945-2000[R]. Naval Research Laboratory Technical Report, 2002: NRL/MR/7540-02-16,112.
[16] REYNOLDS R W, RAYNER N A, SMITH T M, et al. An improved in situ and satellite SST analysis for climate[J]. Journal of Climate,2002,15(13):1 609-1 625.
[17] YU L, WELLER R A. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981-2005)[J]. Bulletin of the American Meteorological Society,2007,88(4):527-539.
[18] HENDON H H, GLICK J. Intraseasonal air-sea interaction in the tropical Indian and Pacific Oceans[J]. Journal of Climate,1997,10(4):647-661.
[19] KUMAR R R, KUMAR B P, SATYANARAYANA A N V, et al. Parameterization of sea surface drag under varying sea state and its dependence on wave age[J]. Natural Hazards,2008,49(2):187-197.
[20] POWELL M D, VICKERY P J, REINHOLD T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature,2003,422(6929):279-283.
[21] KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society,1996,77(3):436-471.
[22] SHAY L K, GONI G J, BLACK P G. Effects of a warm oceanic feature on Hurricane Opal[J]. Monthly Weather Review,2000,128(5):1 366-1 383.
[23] MARKS F D, SHAY L K. Landfalling tropical cyclones: Forecast problems and associated research opportunities[J]. Bulletin of the American Meteorological Society,1998,79(2):305-323.
[24] HONG X D, CHANG S W, RAMAN S, et al. The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico[J]. Monthly Weather Review,2000,128(5):1 347-1 365.
[25] LIN I-I, WU C C, EMANUEL K A, et al. The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy[J]. Monthly Weather Review,2005,133(9):2 635-2 649.
[26] WANG Gui-hua, SU Ji-lan, CHU P C. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophysical Research Letters,2003,30(21):2121.
[27] ZHOU T, YU R, ZHANG J, et al. Why the western Pacific subtropical high has extended westward since the late 1970s[J]. Journal of Climate,2009,22(8):2 199-2 215.
[28] SUI C-H, CHUNG P-H, LI T. Interannual and interdecadal variability of the summertime western North Pacific subtropical high[J]. Geophysical Research Letters,2007,34(11):L11701,doi:10.1029/2006GL029204.
[29] LU Ri-yu, DONG Bu-wen. Westward extension of north Pacific subtropical high in summer[J]. Journal of the Meteorological Society of Japan Ser II,2001,79(6):1 229-1 241.
[30] YE Tian-shu, ZHI Rong, ZHAO Jun-hu, et al. The two annual northward jumps of the West Pacific Subtropical High and their relationship with summer rainfall in Eastern China under global warming[J]. Chinese Physics B,2014,23(6):069203-01-10.
[31] SONG Jin-jie, WU Rong-sheng, QUAN Wan-qing, et al. Impact of the subtropical high on the extratropical transition of tropical cyclones over the western North Pacific[J]. Acta Meteorologica Sinica,2013,27(4):476-485.
[32] LEE S S, SEO Y W, HA K J, et al. Impact of the western North Pacific subtropical high on the East Asian monsoon precipitation and the Indian Ocean precipitation in the boreal summertime[J]. Asia-Pacific Journal of Atmospheric Sciences,2013,49(2):171-182.

基金

国家重点基础研究发展计划(“973”计划)资助(2013CB430302);大洋“十二五”专项项目资助(DY125-11-E-02);国家自然科学基金项目资助(41376034)

PDF(1959 KB)

Accesses

Citation

Detail

段落导航
相关文章

/