海洋学研究 ›› 2022, Vol. 40 ›› Issue (1): 53-63.DOI: 10.3969/j.issn.1001-909X.2022.01.006
轨道数据是卫星资料处理过程涉及的重要参数,高质量HY-1C卫星产品离不开准确的轨道计算。本文从两行报(Two-Line Orbital Element,TLE)中提取数据,使用STK(Satellite Tool Kit)软件准确模拟出卫星轨道并输出星历表,通过比较两种计算HY-1C卫星轨道算法的精度,评估摄动因素对轨道计算的影响。方法一未考虑摄动,以参考时间的轨道根数为基础外推出观测时间的星历参数,进而计算卫星轨道数据;方法二采用考虑摄动的SGP4模型进行轨道计算。结果表明摄动对轨道计算结果影响明显:不考虑摄动的算法随着时间的推移误差显著增大,0.5 h内位置和速度误差分别小于10 km和10 m/s;考虑摄动的SGP4模型算法计算速度快、计算精度高且稳定性好,24 h内位置和速度误差分别小于68 m和0.051 m/s。因此,SGP4模型算法可用于近轨卫星HY-1C的高精度轨道计算。
摘要: 轨道数据是卫星资料处理过程涉及的重要参数,高质量HY1C卫星产品离不开准确的轨道计算。本文从两行报(TwoLine Orbital Element,TLE)中提取数据,使用STK(Satellite Tool Kit)软件准确模拟出卫星轨道并输出星历表,通过比较两种计算HY1C卫星轨道算法的精度,评估摄动因素对轨道计算的影响。方法一未考虑摄动,以参考时间的轨道根数为基础外推出观测时间的星历参数,进而计算卫星轨道数据;方法二采用考虑摄动的SGP4模型进行轨道计算。结果表明摄动对轨道计算结果影响明显:不考虑摄动的算法随着时间的推移误差显著增大,0.5 h内位置和速度误差分别小于10 km和10 m/s;考虑摄动的SGP4模型算法计算速度快、计算精度高且稳定性好,24 h内位置和速度误差分别小于68 m和0.051 m/s。因此,SGP4模型算法可用于近轨卫星HY1C的高精度轨道计算。
中图分类号: