海洋学研究 ›› 2024, Vol. 42 ›› Issue (3): 38-50.DOI: 10.3969/j.issn.1001-909X.2024.03.003

• 研究综述 • 上一篇    下一篇

海洋涡旋智能检测研究进展

徐广珺1,2(), 施宇诚1, 余洋3, 谢华荣4, 谢文鸿5, 刘婧媛1, 林夏艳6, 刘宇6, 董昌明2,4,*()   

  1. 1.广东海洋大学 电子与信息工程学院,广东 湛江 524088
    2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519000
    3.福建省气象台, 福建 福州 350007
    4.南京信息工程大学 海洋科学学院,江苏 南京 210044
    5.南京星遥科技有限公司,江苏 南京 210012
    6.浙江海洋大学 海洋科学与技术学院,浙江 舟山 316022
  • 收稿日期:2023-12-30 修回日期:2024-08-12 出版日期:2024-09-15 发布日期:2024-11-25
  • 通讯作者: *董昌明(1967—),男,教授,主要从事人工智能海洋学研究,E-mail:cmdong@nuist.edu.cn
  • 作者简介:徐广珺(1987—),男,江苏省南京市人,主要从事人工智能海洋学、卫星海洋动力学研究,E-mail:gjxu_gdou@yeah.net
  • 基金资助:
    国家重点研发计划项目(2023YFC3008200);南方海洋科学与工程广东省实验室(珠海)自主科研项目(SML2020SP007);热带海洋环境国家重点实验室(中国科学院南海海洋研究所)开放课题(LTO2319)

Recent developments in AI-based oceanic eddy identification

XU Guangjun1,2(), SHI Yucheng1, YU Yang3, XIE Huarong4, XIE Wenhong5, LIU Jingyuan1, LIN Xiayan6, LIU Yu6, DONG Changming2,4,*()   

  1. 1. School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
    2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
    3. Fujian Provincial Meteorological Observatory, Fuzhou 350007, China
    4. School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
    5. Nanjing Xingyao Technology Co., LTD, Nanjing 210012, China
    6. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
  • Received:2023-12-30 Revised:2024-08-12 Online:2024-09-15 Published:2024-11-25

摘要:

海洋涡旋是一种常见的海洋现象,在全球海洋物质和能量的输运中起着重要作用。随着海洋研究技术手段的不断提升,各类海洋涡旋检测方法应运而生。传统涡旋检测方法应用广泛,但其过度依赖于专家经验设置阈值和持续的人工干预,存在检测误差较大、工作效率低以及全球普适性差等问题,难以适应复杂多变的海洋环境。当前人工智能快速发展,其在海洋涡旋智能检测中能够自动、快速地提取图像深层特征,有效解决海洋现象特征相似度高、几何差异大的问题。该文立足于当前海洋涡旋智能检测的发展现状,从编码器-解码器结构、全卷积神经网络、多尺度上下文方法和注意力机制等方面回顾了不同深度学习方法在海洋涡旋智能检测中的应用,以期为海洋涡旋研究提供一些启示和参考。

关键词: 海洋涡旋, 人工智能, 特征检测, 深度学习, 编码器-解码器结构, 全卷积神经网络, 多尺度上下文方法, 注意力机制

Abstract:

Ocean eddies are prevalent oceanic phenomenon that play a crucial role in the global transportation of oceanic materials and energy. Although traditional methods for detecting ocean eddies are widely used, they suffer from significant drawbacks such as excessive reliance on expert-set thresholds, continuous manual intervention, large detection errors, low efficiency, and poor global applicability, making it difficult to adapt to the complex and variable marine environment. Currently, the rapid development of artificial intelligence (AI) presents a promising solution for the intelligent detection of ocean eddies. AI can automatically and rapidly extract deep features from images, effectively address the challenges posed by the high similarity in oceanic phenomenon features and significant geometric variability. This paper provides an overview of AI-based oceanic eddy identification methods based on different deep learning methods, focuses on coder-decoder structure, fully convolutional neural network, multi-scale context method and attention mechanism, and aims to provide valuable insights and references for future ocean eddy research.

Key words: oceanic eddy, artificial intelligence, feature detection, deep learning, coder-decoder structure, fully convolutional neural network, multi-scale context method, attention mechanism

中图分类号: