利用ALOS PALSAR全极化SAR内波图像,对比分析了SAR海洋内波在11种极化特征与后向散射系数(σ0) 图像中的可视性。在提取的SAR极化特征图像中,Lambda值的内波特征最为明显,极化熵和极化角次之。与σ0图像相比,Lambda值的内波可视性优于同极化的σ0图像;对于极化熵和极化角,沿距离向传播的内波可视性优于同极化的σ0图像,沿方位向传播的内波可视性略差于同极化的σ0图像,两者均优于交叉极化的σ0图像。HH/VV极化比、归一化圆极化系数和Bata值的内波特征较弱;HH/HV极化比、VV/VH极化比、Gamma值、Delta值和各向异性指数的内波图像均不清晰,无法识别内波。
Abstract
Comparison for the visibility of 11 SAR polarization characteristics and σ0 images of internal waves were performed by using ALOS PALSAR quad-polarization SAR images. In SAR polarization characteristics of internal waves, the characteristic of Lambda values is the most obvious and then the characteristics of Entropy and Alpha are next. Compared with the images of σ0, the visibility of Lambda values for internal waves is better than that of copar-polarization σ0 images. For the Entropy and Alpha, the visibility of internal waves propagating along the range direction is better than that of the copar-polarization σ0 images; the visibility of internal waves propagating along the azimuth direction is slightly worse than that of the copar-polarization σ0 images. The characteristics of Entropy and Alpha are better than those of cross polarization σ0 images. The characteristics of internal waves for the images of the HH/VV, normalized coefficient of circular polarization, and Beta are not obvious; the characteristics of internal waves for the images of the HH/HV, VV/VH, Gamma, Delta, and Anisotropic index are fuzzy and internal waves can't be identified in these images.
关键词
ALOS PALSAR /
全极化SAR /
极化特征 /
海洋内波
Key words
ALOS PALSAR /
polarization SAR /
polarization characteristics /
internal waves
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FENG Shi-zuo, LI Feng-qi, LI Shao-jing. Introduction to marine science[M]. Beijing: Higher Education Press,1999:90-195.
冯士筰,李凤岐,李少菁.海洋科学导论[M].北京:高等教育出版社,1999:90-195.
[2] ZHANG Jie. Synthetic aperture radar ocean information processing and application[M]. Beijing: Science Press,2004.
张杰.合成孔径雷达海洋信息处理与应用[M].北京:科学出版社,2004.
[3] APEL J R, CONZALEZ F I. Nonlinear features of internal waves off Baja California as observed from the Seasat imaging radar[J]. Journal of Geophysical Research: Oceans(1978-2012),1983,88(C7):4 459-4 446.
[4] ZHENG Quan-an, YUAN Ye-li., KLEMAS V, et al. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width
[J]. Journal of Geophysical Research: Oceans(1978-2012),2001,106(31):415-423.
[5] FU L L, HOLT B. Seasat views oceans and sea ice with Synthetic-Aperture Radar[M]. USA: NASA JPL Publication,1982.
[6] SMALL J, HALLOCK Z, PAVEY G, et al. Observations of large amplitude internal waves at the Malin Shelf edge during SESAME 1995[J]. Continental Shelf Research,1999,19(11):1 389-1 436.
[7] ALPERS W, HENG Wang-chen, HOCK L. Observation of internal waves in the Andaman Sea by ERS SAR[C]//Geoscience and Remote Sensing. IGARSS'97. Remote Sensing—A Scientific Vision for Sustainable Development, 1997 IEEE International. IEEE,1997,4:1 518-1 520.
[8] PORTER D L, THOMPSON D R. Continental shelf parameters inferred from SAR internal wave observations[J]. Journal of Atmospheric and Oceanic Technology,1999,16(4):475-487.
[9] WANG Hai-Jiang. Polarization SAR image classification method research[D]. Chengdu: University of Electronic Science and Technology of China,2008.
王海江.极化SAR图像分类方法研究[D].成都:电子科技大学,2008.
[10] SCHULER D L, LEE J S, KASILINGAM D, et al. Surface roughness and slope measurements using polarimetric SAR data[J]. Geoscience and Remote Sensing, IEEE Transactions on,2002,40(3):687-698.
[11] KIM J W, KIM D, HWANG B J. Characterization of Arctic Sea ice thickness using high-resolution spaceborne polarimetric SAR data[J]. Geoscience and Remote Sensing, IEEE Transactions on,2012,50(1):13-22.
[12] LEE J S, POTTIER E. Polarimetric radar imaging: from basics to applications[M]. Florida: CRC Press,2009.
基金
国家高技术研究发展计划项目资助(2013AA09A502)