基于稀疏AR模型的潮流信号建模与预报

卢小鹏, 叶庆卫, 吕翠兰

海洋学研究 ›› 2015, Vol. 33 ›› Issue (2) : 14-18.

PDF(993 KB)
PDF(993 KB)
海洋学研究 ›› 2015, Vol. 33 ›› Issue (2) : 14-18. DOI: 10.3969/j.issn.1001-909X.2015.02.003
研究论文

基于稀疏AR模型的潮流信号建模与预报

  • 卢小鹏1, 叶庆卫*2, 吕翠兰1
作者信息 +

Tidal current prediction based on the sparse AR model

  • LU Xiao-peng1, YE Qing-wei*2 , LÜ Cui-lan1
Author information +
文章历史 +

摘要

潮流信号处理与预报在很多方面具有非常重要的意义和价值。本文引入信号稀疏表示理论,构建一种稀疏AR模型,寻找各潮流数据间的历史关联性,并进行预报分析。首先由实测潮流信号进行常规AR建模,获得一组过完备稀疏基;其次随机从该过完备稀疏基抽取部分建立欠定方程组,利用稀疏优化算法获得最稀疏的AR系数;多次重复上一步,获得稀疏AR系数的平均以增强稀疏AR模型的稳定性;最后利用这些稀疏AR系数来重构或预测潮流信号。文章针对实测潮流信号,特别是存在多峰值有回流现象的潮流信号,进行了稀疏AR建模与预测的多次实验。实验结果与传统的潮流信号调和预报方法相对比,发现基于稀疏AR模型的潮流预报对于潮流存在多变的现象时,具有明显优越性,从回报结果来看,稀疏AR模型的潮流预报均方差明显小于传统潮流调和分析预报方法。

Abstract

The processing and prediction of tidal current signal are significant and valuable in various aspects. This study introduced a signal sparse representation theory, constructed a sparse AR model in order to find out the connection among the tidal currents, and to carry out the forecast analysis. Firstly, we established the conventional AR model by measuring current signal, so we could get a set of complete sparse matrix. Secondly, we randomly extracted parts of this to create underdetermined system of equations. We acquired the sparse AR coefficients by using sparse optimization algorithm. After repeating above steps for many times, the stability increased and reached to average sparse AR coefficients. Finally, the last step was to reconstruct or predict the tidal current signal by using the last sparse AR coefficients. By using the measured observations of tidal current, especially the observations with many peaks or rotary current phenomenon. Many experiments had been done to establish the sparse AR model and prediction. Comparing this AR model with flow harmonic method, the sparse AR model is much better than the traditional tidal harmonic method especially in analysing the region with changeable tidal current. Moreover, the variance of the sparse AR model is less than that of the traditional tidal harmonic analysis.

关键词

稀疏AR模型 / 潮流预报 / 稀疏优化 / OMP算法

Key words

AR model / tidal current forecast / sparse optimization / Orthogonal Matching Pursuit algorithms

引用本文

导出引用
卢小鹏, 叶庆卫, 吕翠兰. 基于稀疏AR模型的潮流信号建模与预报[J]. 海洋学研究. 2015, 33(2): 14-18 https://doi.org/10.3969/j.issn.1001-909X.2015.02.003
LU Xiao-peng, YE Qing-wei , LÜ Cui-lan. Tidal current prediction based on the sparse AR model[J]. Journal of Marine Sciences. 2015, 33(2): 14-18 https://doi.org/10.3969/j.issn.1001-909X.2015.02.003
中图分类号: P731.35   

参考文献

[1] FANG Guo-hong,WEI Ze-xun,WANG Yong-gang. Development of tide and tidal current regional prediction in China[J]. Advances in Earth Science,2008,23(4):331-336.
方国洪,魏泽勋,王永刚.我国潮汐潮流区域预报的发展[J].地球科学进展,2008,23(4):331-336.
[2] CHEN Zong-yong. Tidology[M].Beijing:Science Press,1980.
陈宗镛.潮汐学[M].北京:科学出版社,1980.
[3] FANG Guo-hong,ZHENG Wen-zhen,CHEN Zong-yong,et al.Analysis and prediction of tides and tidal currents[M].Beijing:China Ocean Press,1986.
方国洪,郑文振,陈宗镛,等.潮汐和潮流的分析与预报[M].北京:海洋出版社,1986.
[4] ZHAO Yi-jiu.Study on compressive sampling and recovery algorithm of sparse analog singnal[D]. Chengdu: University of Electronic Science and Technology of China,2012.
赵贻玖.稀疏模拟信号压缩采样与重构算法研究[D]. 成都:电子科技大学,2012.
[5] PATI Y C , REZAIIFAR R, KRISHNAPRASAD P S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition[R].Piscataway,USA:IEEE,1993:40-44.
[6] DONOHO D. Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1 289-1 306.
[7] TSAIG Y, DONOHO D L. Extensions of compressed sensing[J].Signal Processing,2006,86(3):549-571.
[8] YE Qing-wei,SUN Yang,WANG Xiao-dong, et al. An improve LLE algorithm with sparse constraint[J].Journal of Computational and Theoretical Nanoscience,2013,10(12) :2 872-2 876.
[9] HUANG Jia-you. Meteorological statistical analysis and forecasting method[M]. Beijing: Meteorological Press,2004:3.
黄嘉佑.气象统计分析与预报方法[M].北京:气象出版社,2004:3.
[10] NIE Shu-yuan. The historical process of analysis on Yule’s established AR (P) model[J].Statistics and Decision,2011,237(3):4-7.
聂淑媛.尤尔建立时间序列线性自回归AR(P)模型的历史过程探析[J].统计与决策,2011,237(3):4-7.
[11] YU Chun-mei. Review on sparse optimization algorithms[J]. Computer Engineering and Applications, 2014, 50(11):210-217.
于春梅.稀疏优化算法综述[J].计算机工程与应用, 2014,50(11):210-217.

基金

2012年中央分成海域使用金支出项目(环保类,国海办字[2013]551号);国家自然科学基金项目资助(61071198)

PDF(993 KB)

Accesses

Citation

Detail

段落导航
相关文章

/