[1] WU Zhi-yuan, JIANG Chang-bo, DENG Bin, et al. Simulation of the storm surge in the South China Sea based on the coupled sea-air model[J]. Chin Sci Bull, 2018, 63(11): 3 494-3 504. 伍志元, 蒋昌波, 邓斌, 等. 基于海气耦合模式的南中国海北部风暴潮模拟[J]. 科学通报, 2018, 63(11): 3 494-3 504. [2] WU Zhi-yuan, JIANG Chang-bo, DENG Bin, et al. Sensitivity of different parameterization schemes on Typhoon Kai-tak prediction based on the WRF model[J]. Journal of Marine Science, 2019, 37(1): 1-8. 伍志元, 蒋昌波, 邓斌, 等. WRF模式中台风“启德”模拟对参数化方案的敏感性分析[J]. 海洋学研究, 2019, 37(1):1-8 [3] ZHOU Liang-ming, LI Zhan-bin, MOU Lin, et al. Numerical simulation of wave field in the South China Sea using WAVEWATCH III[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(3): 656-664. [4] NAYAK S, BHASKARAN P K. Coastal vulnerability due to extreme waves at Kalpakkam based on historical tropical cyclones in the Bay of Bengal[J]. International Journal of Climatology, 2014, 34(5): 1 460-1 471. [5] YUK J H, KIM K O, LEE H S, et al. Simulation of storm surge and wave due to typhoon Isewan (5915)[J]. China Ocean Engineering, 2015, 29(4): 473-488. [6] DROST E J F, LOWE R J, IVEY G N, et al. The effects of tropical cyclone characteristics on the surface wave fields in Australia's North West region[J]. Continental Shelf Research, 2017, 139: 35-53. [7] YIN Kai, XU Su-dong, HUANG Wen-rui, et al. Effects of sea level rise and typhoon intensity on storm surge and waves in Pearl River Estuary[J]. Ocean Engineering, 2017, 136: 80-93. [8] KIM S, MORI N, MASE H, et al. The role of sea surface drag in a coupled surge and wave model for Typhoon Haiyan 2013[J]. Ocean Modelling, 2015, 96: 65-84. [9] WU Zhi-yuan, JIANG Chang-bo, DENG Bin, et al. SWAN-ROMS coupling model and its application in the idealized tidal inlet[J]. Journal of Harbin Engineering University, 2019, 40(8):1 420-1 426. 伍志元, 蒋昌波, 邓斌, 等. 波流耦合模式及其在理想潮汐通道中的应用[J].哈尔滨工程大学学报, 2019, 40(8):1 420-1 426. [10] WU Zhi-yuan, JIANG Chang-bo, DENG Bin, et al. Evaluation of numerical wave model for typhoon wave simulation in South China Sea[J]. Water Science and Engineering, 2018, 11(3): 229-235. [11] LIU Cheng, ZHENG Chong-wei, LI Rong-bo, et al. Statistics analysis of big wave frequency and extreme wave height in the East China Sea[J]. Marine Forecasts, 2014, 31(2):8-13. 刘成, 郑崇伟, 李荣波,等. 东中国海大浪频率和极值波高统计分析[J]. 海洋预报, 2014, 31(2):8-13. [12] HAN Shu-zong, SHI Yu-jiao. The distributional character of typhoon waves in the East China Sea[J]. Periodical of Ocean University of China, 2013, 43(10): 1-7. 韩树宗, 史玉姣. 东中国海台风浪分布特征研究[J]. 中国海洋大学学报:自然科学版, 2013, 43(10): 1-7. [13] ZONG Fang-yi, WU Ke-jian. Research on distributions and variations of wave energy in South China Sea Based on recent 20 years' wave simulation results using Swan Wave Model[J]. Transactions of Oceanology and Limnology, 2014(3):1-12. 宗芳伊, 吴克俭. 基于近20年的SWAN模式海浪模拟结果的南海波浪能分布、变化研究[J]. 海洋湖沼通报, 2014(3):1-12. [14] LIANG Shu-xiu, SUN Zhao-chen, YIN Hong-qiang, et al. Influence factors of typhoon wave forecast in the South Sea by SWAN Model[J]. Advances in Marine Science, 2015, 33(1):19-30. 梁书秀, 孙昭晨, 尹洪强,等. 基于SWAN模式的南海台风浪推算的影响因素分析[J]. 海洋科学进展, 2015, 33(1):19-30. [15] YING Wang-min, ZHENG Qiao, ZHU Chen-chen, et al. Numerical simulation of “CHAN-HOM” typhoon waves using SWAN model[J]. Marine Sciences, 2017, 41(4): 108-117. 应王敏, 郑桥, 朱陈陈, 等. 基于 SWAN 模式的 “灿鸿” 台风浪数值模拟[J]. 海洋科学, 2017, 41(4): 108-117. [16] SUN Rui, HOU Yi-jun, LI Jian, et al. The simulation of a typhoon wave in the northern part of the South China Sea[J]. Marine Sciences, 2013, 37(12):76-83. 孙瑞, 侯一筠, 李健,等. 南海北部一次台风浪过程的数值模拟[J]. 海洋科学, 2013, 37(12):76-83. [17] WU Hai-lang, CHEN Xi, CHEN Xu-jun, et al. The numerical simulation and analysis of the Suao Harbor's typhoon wave[J]. Journal of Xiamen University: Natural Science , 2015, 54(2):207-215. 武海浪, 陈希, 陈徐均,等. 台湾苏澳港台风浪数值模拟与分析[J]. 厦门大学学报:自然科学版, 2015, 54(2):207-215. [18] YUAN Kai-rui, SHANG Shao-ping, XIE Yan-shuang, et al. The simulation of typhoon waves in Taiwan Strait[J]. Journal of Xiamen University: Natural Science , 2014, 53(3):413-417. 袁凯瑞, 商少平, 谢燕双,等. 台湾海峡台风浪的数值模拟[J]. 厦门大学学报:自然科学版, 2014, 53(3):413-417. [19] WANG Ya-nan, WANG Qing-yuan, LIU Bin-xian. The ensemble wave forecast and test of cold air wave by using SWAN model in the Bohai Sea and the Yellow Sea[J]. Acta Oceanologica Sinica, 2015, 37(9):10-16. 王亚男, 王庆元, 刘彬贤. 黄、渤海冷空气海浪场的集合预报试验[J].海洋学报, 2015, 37(9):10-16. [20] LI Da-ming, LI Yang-yang, PAN Fan. Coupling model of 2-D variable zone storm surge and waves for Bohai Bay[J]. Journal of Shanghai Jiaotong University, 2015, 49(5):730-736. 李大鸣, 李杨杨, 潘番. 渤海湾二维温带风暴潮与波浪耦合数学模型[J].上海交通大学学报, 2015, 49(5):730-736. [21] LIU Shou-hua, YANG Zhong-liang, YUE Xin-yang, et al. Wave energy resource assessment in Shandong offshore[J]. Acta Oceanologica Sinica, 2015, 37(7): 108-122. 刘首华, 杨忠良, 岳心阳,等. 山东省周边海域波浪能资源评估[J]. 海洋学报, 2015, 37(7):108-122. [22] WARNER J C, ARMSTRONG B, HE R, et al. Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system[J]. Ocean Modelling, 2010, 35(3): 230-244. [23] KUMAR N, VOULGARIS G, WARNER J C, et al. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications[J]. Ocean Modelling, 2012, 47: 65-95. [24] ZAMBON J B, HE R, WARNER J C. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model[J]. Ocean Dynamics, 2014, 64(11): 1 535-1 554. [25] LIU Bin, LIU Hui-qing, XIE Lian, et al. A coupled atmosphere-wave-ocean modeling system: Simulation of the intensity of an idealized tropical cyclone[J]. Monthly Weather Review, 2011, 139(1): 132-152. [26] BENNETT V C C, MULLIGAN R P. Evaluation of surface wind fields for prediction of directional ocean wave spectra during Hurricane Sandy[J]. Coastal Engineering, 2017, 125: 1-15. [27] LAPRISE R. The Euler equations of motion with hydrostatic pressure as an independent variable[J]. Monthly Weather Review, 1992, 120(1): 197-207. [28] ROGERS W E, HWANG P A, WANG D W. Investigation of wave growth and decay in the SWAN model: three regional-scale applications[J]. Journal of Physical Oceanography, 2003, 33(2): 366-389. [29] LARSON J, JACOB R, ONG E. The model coupling toolkit: a new Fortran 90 toolkit for building multiphysics parallel coupled models[J]. The International Journal of High Performance Computing Applications, 2005, 19(3): 277-292. |