近百年来南极威德尔海北部水动力环境演变

韩喜彬, 章伟艳, 杨海丽, 初凤友, 唐灵刚, 许冬, 葛倩, 边叶萍

海洋学研究 ›› 2015, Vol. 33 ›› Issue (2) : 30-39.

PDF(2921 KB)
PDF(2921 KB)
海洋学研究 ›› 2015, Vol. 33 ›› Issue (2) : 30-39. DOI: 10.3969/j.issn.1001-909X.2015.02.005
研究论文

近百年来南极威德尔海北部水动力环境演变

  • 韩喜彬1,2, 章伟艳1,2, 杨海丽1,2, 初凤友1,2, 唐灵刚1,2, 许冬1,2, 葛倩1,2, 边叶萍1,2
作者信息 +

The hydrodynamic environmental change in North Weddell Sea of Antarctic over past 100 years

  • HAN Xi-bin1,2, ZHANG Wei-yan1,2, YANG Hai-li1,2, CHU Feng-you1,2, TANG Ling-gang1,2, XU Dong1,2, GE Qian1,2, BIAN Ye-ping1,2
Author information +
文章历史 +

摘要

南极威德尔海水动力环境的变化及其对全球变化的响应有着重要的意义,近百年来以全球变暖为特征的全球变化已经影响到该地。对南极威德尔海北部ANT28-D5-6短柱沉积物进行了210Pb测年、粒度参数和冰筏碎屑物含量的测试分析。结果显示威德尔海北部在近百年时间内(1922—2011年)水动力环境发生了显著的转变。在1922—1972年间,威德尔海北部处在高能高速动荡的水动力环境,并携带沉积了大量的冰筏碎屑物,对应了全球温度变化相对较低的阶段。但在1930—1936年间和1946—1952年间发生了2次水动力减弱事件。1939年和1950年两次冰筏碎屑物含量的增加可能与太阳活动峰年引起的威德尔环流经向增强有关。1972—2011年威德尔海北部处在较为平静的弱能状态,对应了全球气温持续升温的阶段。1955—1972年威德尔海水动力环境处在从高能动荡的状态向低能静水状态快速过渡的阶段。

Abstract

As one of the major generated place of the Antarctic Bottom Water (AABW), the Weddell Sea is a very important margin sea in Antarctic, its hydrodynamic environmental change and its response has important significance to the global change. Over the past century, the global change characterized by global warming had affected Antarctic and the Southern Ocean. In order to understand the hydrodynamic environmental changes in this region, 210Pb dating, grain size parameter and ice-rafted detritus content were analyzed and discussed for a short sediment core of ANT28-D5-6 which was taken in the north of Weddell Sea, south to the South Orkney Islands and east to the Antarctic Peninsula. The results show that the hydrodynamic force of Northern Weddell Sea had significant change in nearly hundred years from 1922 to 2011. During 1922-1972, the Northern Weddell Sea was in a high-energy, high-speed and turbulent hydrodynamic environment, and a large amount of ice raft debris was carried and deposited, which was corresponded well to the relatively low temperature stage of the earth. In the course of them, there were twice hydrodynamic environment weakened events happened during 1930-1936 and 1946-1952. The twice increased events of ice-rafted detritus content in 1939 and 1950 might be related to the longitudinal enhancement of Weddell Gyre, which was caused by 17th and 18th Solar Maximum Year. During 1972-2011, the Northern Weddell Sea remained relatively calm and low energy hydrodynamic condition, which was corresponded well to the continual warming up stage of the world. During 1955-1972, it was a rapid transition from the high-energy and turbulent state to the low-energy water dynamic of the Northern Weddell Sea.

关键词

威德尔海 / 水动力环境 / 粒度参数 / 冰筏碎屑物 / 210Pb

Key words

Weddell Sea / hydrodynamic environment / grain size parameter / ice raft debris / 210Pb

引用本文

导出引用
韩喜彬, 章伟艳, 杨海丽, 初凤友, 唐灵刚, 许冬, 葛倩, 边叶萍. 近百年来南极威德尔海北部水动力环境演变[J]. 海洋学研究. 2015, 33(2): 30-39 https://doi.org/10.3969/j.issn.1001-909X.2015.02.005
HAN Xi-bin, ZHANG Wei-yan, YANG Hai-li, CHU Feng-you, TANG Ling-gang, XU Dong, GE Qian, BIAN Ye-ping. The hydrodynamic environmental change in North Weddell Sea of Antarctic over past 100 years[J]. Journal of Marine Sciences. 2015, 33(2): 30-39 https://doi.org/10.3969/j.issn.1001-909X.2015.02.005
中图分类号: P728    P736   

参考文献

[1] IPCC. IPCC fourth assessment report (AR4)[R].Cambridge: PRESS C U,2007.
[2] LAURENT C, PAREY S. Estimation of 100-year-return-period temperatures in France in a non-stationary climate: Results from observations and IPCC scenarios[J]. Global and Planetary Change, 2007,57(1-2):177-188.
[3] DING Yi-hui, SUN Ying. Recent advances in climate change science[J]. Advances in Climate Change Research, 2006,2(4):161-167.
丁一汇,孙颖.国际气候变化研究新进展[J].气候变化研究进展,2006,2(4):161-167.
[4] QIN Da-he. Facts, impact, adaptation and mitigation strategy of climate change[J]. Science Foundation in China, 2003,17(1):1-3.
秦大河.气候变化的事实与影响及对策[J].中国科学基金,2003,17(1):1-3.
[5] CHEN Xing-rong, ZHANG Zhi-hua, CAI Yi. Review of the climate change in recently one hundred years and the potential natural factors affect[J]. Marine Forecasts, 2013,30(1):78-85.
陈幸荣,张志华,蔡怡.近百年气候变化及可能的自然影响因素研究进展[J].海洋预报,2013,30(1):78-85.
[6] JIN Jian-hui, LIU Xiu-min, ZHAO Guo-yong, et al. General trend and its secondary fluctuations of global climate change[J]. Journal of Subtropical Resources and Environment, 2012,7(1):40-46.
靳建辉,刘秀铭,赵国永,等.全球气候变化大趋势与次级波动[J].亚热带资源与环境学报,2012,7(1):40-46.
[7] HUANG Rui-xin. Ocean circulation: wind-driven and thermohaline processes[M]. Beijing: High Education Press,2012.
黄瑞新.大洋环流:风生与热盐过程[M].北京:高等教育出版社,2012.
[8] SCHLÜTER P, UENZELMANN-NEBEN G. Indications for bottom current activity since Eocene times: The climate and ocean gateway archive of the Transkei Basin, South Africa[J]. Global and Planetary Change, 2008,60(3-4):416-428.
[9] SPEICH S, BLANKE B, MADEC G. Warm and cold water routes of an O.G.C.M. thermohaline conveyor belt[J]. Geophysical Research Letters, 2001,28(2):311-314.
[10] SCHLOSS I R, ABELE D, MOREAU S, et al. Response of phytoplankton dynamics to 19-year (1991-2009) climate trends in Potter Cove (Antarctica)[J]. Journal of Marine Systems, 2012,92(1):53-66.
[11] PURKEY S G, GREGORY C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets[J]. Journal of Climate, 2010,23(23):6 336-6 351.
[12] PURKEY S G, JOHNSON G C. Global contraction of Antarctic Bottom Water between the 1980s and 2000s[J]. Journal of Climate, 2012,25(17):5 830-5 844.
[13] PURKEY S G, JOHNSON G C. Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain[J]. Journal of Climate, 2013,26(16):6 105-6 122.
[14] TREVENA J, SIJP W P, ENGLAND M H. Stability of Antarctic Bottom Water formation to freshwater fluxes and implications for global climate[J]. Journal of Climate, 2008,21(13):3 310-3 326.
[15] FOLDVIK A, GAMMELSR D T. Notes on Southern Ocean hydrography, sea-ice and bottom water formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988,67(1-2):3-17.
[16] FAHRBACH E, ROHARDT G, SCHEELE N, et al. Formation and discharge of deep and bottom water in the northwestern Weddell Sea[J]. Journal Maritime Research, 1995,53(4):515-538.
[17] CARMACK E C, FOSTER T D. On the flow of water out of the Weddell Sea[J]. Deep-Sea Research, 1975,22(11):711-724.
[18] GORDON A L, HUBER B A, HELLMER H H, et al. Deep and bottom water of the Weddell Sea's western rim[J]. Science, 1993,262(5130):95-97.
[19] GORDON A, VISBECK M, HUBER B. Export of Weddell Sea deep and bottom water[J]. Journal of Geophysical Research Oceans, 2001,106(C5):9 005-9 017.
[20] PUDSEY C J. Late quaternary changes in Antarctic bottom water velocity inferred from sediment grain size in the northern Weddell Sea[J]. Marine Geology, 1992,107(1-2):9-33.
[21] GOLDBERG E D, KOIDE M. Rates of sediment accumulation in the Indian Ocean[C]∥GEISS J, GOLDBURG E D. Earth science and meteoritics. Amsterdam:North-Holland Publishing Company, 1963:90-102.
[22] KOIDE M, BRULAND K W, GOLDBERG E D. Th-228/Th-232 and Pb-210 geochronologies in marine and lake sediments[J]. Geochimica et Cosmochimica Acta, 1973,37(5):1 171-1 187.
[23] MATSUMOTO Ei-ji, LI Zhong-sheng. The sediment rates of Biwa Lake of Japan using Pb210 [J].Geology Geochemistry, 1977(06):62-66.
松本英二,李钟声.Pb210法测定琵琶湖底泥的沉积速度[J].地质地球化学,1977(06):62-66.
[24] LIN Rui-fen, MIN Yu-shun, WEI Ke-qin, et al.210Ph-Dating of sediment cores from the Pearl River mouth and its environmental geochemistry implication[J].Geochimica, 1998,27(5):401-411.
林瑞芬,闵育顺,卫克勤,等.珠江口沉积柱样210Pb法年龄测定结果及其环境地球化学意义[J].地球化学,1998,27(5):401-411.
[25] LIU Zhi-guang, WANG Fu, PEI Yan-dong, et al.137Cs and 210Pb distribution and modern sedimentation in the north and south intertidal zones of Sanhe Island, Tianjin, China[J].Geological Bulletin of China, 2007,26(7):864-868.
刘志广,王福,裴艳东,等.天津三河岛潮间带137Cs与210Pb的分布及现代沉积过程[J].地质通报,2007,26(7):864-868.
[26] HU Bang-qi, LI Guo-gang, LI Jun, et al. Spatial variability of the 210Pb sedimentation rates in the Bohai and Huanghai Seas and its influencing factors[J]. Acta Oceanologica Sinica, 2011,33(6):125-133.
胡邦琦,李国刚,李军,等.黄海、渤海铅-210沉积速率的分布特征及其影响因素[J].海洋学报,2011,33(6):125-133.
[27] YU Wen, HE Jian-hua, LI Yi-liang, et al.210Pb-derived organic carbon deposition flux on the north Chukchi shelf[J]. Chinese Journal of Polar Research, 2012,26(4):391-396.
余雯,何建华,李奕良,等.基于210Pb测年法的楚科奇海陆架北缘有机碳沉积通量研究[J].极地研究,2012,26(4):391-396.
[28] HERNÁNDEZ-MOLINA F J, LARTER R D, REBESCO M, et al. Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: Stratigraphic evidence from a contourite sedimentary tail[J]. Marine Geology, 2006,228(1-4):93-116.
[29] CONNOLY J R, EWINGM. Ice-rafted detritus as a climatic indicator in Antarctic deep sea cores[J]. Science, 1965,150(3705):1 822-1 824.
[30] SMITH D G, LEDBETTER M T, CIESIELSKI P F. Ice-rafted volcanic ash in the South Atlantic sector of the Southern Ocean during the last 100,000 years[J]. Marine Geology, 1983,53(4):291-312.
[31] VORREN T O, HALD M, EDVARDSEN M . Glacigenic sediments and sedimentary environments on continental shelves: genenal prinicples with a case study from the Norwegian shelf[C]∥EHLERS J. Glacial deposits in Northwest Europe. Rotterdam:Balkema, 1983:61-73.
[32] WATKINS N D, KEANY J, LEDBETTER M T, et al. Antarctic glacial history from analyses of ice-rafted deposits in marine sediments: New model and initial tests[J]. Science, 1974,186(4163):533-536.
[33] LABEYRIE L D, PICHON J J, LABRACHERIE M, et al. Melting history of Antarctica during the past 60,000 years[J]. Nature, 1986,322(6081):701-706.
[34] COOKE D W, HAYS J D. Estimates of Antarctic Ocean seasonal sea-ice cover during glacial intervals[C]∥CRADDOCK C. Antarctic geoscience:Symposium on Antarctic geology and geophysics. Wisconsin:The Union of Wisconsin Press, 1982:1 017-1 025.
[35] PIPER D J W, BRISCO C D. Deep-water continental-margin sedimentation, DSDP leg 28, Antarctica[R]. HAYES D E, FRAKES L A. Initial reports of the deep sea drilling project. Washington: U.S. Govt. Printing Office, 1975:727-755.
[36] KENT D, OPDYKE N D, EWING M. Climate change in the North Pacific using ice-rafted detritus as a climatic indicator[J]. Geological Society of America Bulletin, 1971,82(10):2 741-2 754.
[37] PHILLIPS R L, GRANTZ A. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic[J]. Marine Geology, 2001,172(1-2):91-115.
[38] HALL I R, EVANS H K, THORNALLEY D J R. Deep water flow speed and surface ocean changes in the subtropical North Atlantic during the last deglaciation[J]. Global and Planetary Change, 2011,79(3-4):255-263.
[39] LASSEN K, FRIIS-CHRISTENSEN E. Variability of the solar cycle length during the past five centuries and the apparent association with terrestrial climate[J]. Journal of Atmospheric and Terrestrial Physics, 1995,57(8):835-845.
[40] CAVIEDES C N. El Nio 1972: Its climatic, ecological, human, and economic implications[J]. Geographical Review, 1975,65(4):493-509.
[41] ZHANG Li-ming, ZENG Zhao-mei. The discussions on the the global climate anomaly characteristics and its formation reasons[J]. Science in China:Ser B, 1984,14(1):87-96.
章名立,曾昭美.七十年代全球气候异常的特征及其形成原因的探讨[J].中国科学B辑,1984,14(1):87-96.

基金

南北极环境综合考察与评估专项项目资助(CHINARE2012-01-02,CHINARE2013-01-02,CHINARE2014-01-02,CHINARE2015-01-02,CHINARE2013-04-01,CHINARE2014-04-01,CHINARE2015-04-01);“全球变化与海气相互作用”专项项目资助(GASI-04-01-02)

PDF(2921 KB)

Accesses

Citation

Detail

段落导航
相关文章

/