海洋学研究 ›› 2023, Vol. 41 ›› Issue (3): 22-33.DOI: 10.3969/j.issn.1001-909X.2023.03.003
刘佳1(), 郑少军1,2,3,*(), 严厉1,2,3, 陈航彪1, 刘婷甄1
收稿日期:
2022-09-26
修回日期:
2023-03-07
出版日期:
2023-09-15
发布日期:
2023-10-24
通讯作者:
*郑少军(1983—),男,副教授,主要从事物理海洋学研究,E-mail:zhengsj@gdou.edu.cn。
作者简介:
刘佳(1998—),女,四川省凉山彝族自治州人,主要从事中尺度涡研究,E-mail:liujchn@163.com。
基金资助:
LIU Jia1(), ZHENG Shaojun1,2,3,*(), YAN Li1,2,3, CHEN Hangbiao1, LIU Tingzhen1
Received:
2022-09-26
Revised:
2023-03-07
Online:
2023-09-15
Published:
2023-10-24
摘要:
基于1993—2019年海面高度异常数据分析了南澳大利亚海盆表层涡动能的时空变化特征。结果表明,表层涡动能在空间上存在两个高值区,分别位于海盆的西部和东部;在季节尺度上表现为南半球的冬季强,秋季弱,最大值出现在7月(57±9 cm2/s2),最小值出现在3月(40±5 cm2/s2)。涡动能在年际尺度上与ENSO呈显著负相关关系,即在厄尔尼诺(拉尼娜)衰退年,涡动能显著减弱(增强),滞后Niño3.4指数9个月;与SAM呈显著正相关关系,滞后SAM指数14个月,即在SAM正(负)位相的次年,涡动能显著增强(减弱)。
中图分类号:
刘佳, 郑少军, 严厉, 陈航彪, 刘婷甄. 南澳大利亚海盆表层涡动能的时空特征研究[J]. 海洋学研究, 2023, 41(3): 22-33.
LIU Jia, ZHENG Shaojun, YAN Li, CHEN Hangbiao, LIU Tingzhen. Spatiotemporal variation of surface eddy kinetic energy in the South Australian Basin[J]. Journal of Marine Sciences, 2023, 41(3): 22-33.
图1 南澳大利亚海盆及周边海域环流概念图 (图片根据文献[4]改绘。)
Fig.1 Schematic circulation in the South Australian Basin and adjacent regions (Figure was modified from reference[4].)
图2 基于AVISO的南澳大利亚海盆多年平均表层涡动能空间分布
Fig.2 Multi-year average distribution of surface eddy kinetic energy calculated from AVISO in the South Australian Basin
图3 基于AVISO(1993—2019年)的南澳大利亚海盆月平均表层涡动能异常空间分布
Fig.3 Monthly mean surface EKE anomaly distribution calculated from AVISO in the South Australian Basin during 1993-2019
图4 基于AVISO(1993—2019年)的南澳大利亚海盆月平均表层涡动能变化
Fig.4 Monthly mean variation of surface EKE calculated from AVISO in the South Australian Basin during 1993-2019
图6 南澳大利亚海盆表层涡动能(a)、涡动能异常(b)和一年低通滤波涡动能异常(c)的时间序列
Fig.6 Time series of surface EKE (a), EKE anomaly (b), and one year low-pass filtered EKE anomaly (c), respectively in the South Australian Basin
图7 南澳大利亚海盆一年低通滤波涡动能异常和Ni?o3.4指数(a)、IOB指数(b)、IOD指数(c)及SAM指数(d)的时间变化 (红色表示涡动能正异常,蓝色表示涡动能负异常。)
Fig.7 Time series of one year low-pass filtered EKE anomaly and Ni?o3.4 index (a), IOB index (b), IOD index (c) and SAM index (d) in the South Australian Basin (The red indicates positive EKE anomaly and blue indicates negative EKE anomaly.)
图8 一年低通滤波涡动能异常与Ni?o3.4指数(a)、IOB指数(b)、IOD指数(c)和SAM指数(d)的相关关系 (滞后时间正值表示异常滞后于气候指数,负值表示异常超前于气候指数。虚线为95%的置信水平。)
Fig.8 The correlations between one year low-pass filtered EKE anomaly and Ni?o3.4 index (a), IOB index (b), IOD index (c), and SAM index (d) (The positive value of lag time indicates that EKE anomaly lags the index and a negative value indicates that EKE anomaly leads the index, and dash lines represent 95% confidence level.)
图9 一年低通滤波涡动能异常与Ni?o3.4指数(a)、SAM指数(b)的偏相关关系 (滞后时间正值表示异常滞后于气候指数,负值表示异常超前于气候指数。虚线为95%的置信水平。)
Fig.9 The partial correlations between one year low-pass filtered EKE anomaly and Ni?o3.4 index, after removing the SAM (a), between one year low-pass filtered EKE anomaly and SAM index, after removing the ENSO (b) (The positive value of lag time indicates that EKE anomaly lags the index and a negative value indicates that EKE anomaly leads the index, and dash lines represent 95% confidence level.)
[1] |
SCHILLER A, OKE P R, BRASSINGTON G, et al. Eddy-resolving ocean circulation in the Asian-Australian region inferred from an ocean reanalysis effort[J]. Progress in Oceanography, 2008, 76(3): 334-365.
DOI URL |
[2] | MIDDLETON J F, CIRANO M. A northern boundary current along Australia’s southern shelves: The Flinders Current[J]. Journal of Geophysical Research, 2002, 107(C9): 3129. |
[3] | FU L L. Pattern and velocity of propagation of the global ocean eddy variability[J]. Journal of Geophysical Research, 2009, 114(C11): C11017. |
[4] |
OKE P R, GRIFFIN D A, RYKOVA T, et al. Ocean circulation in the Great Australian Bight in an eddy-resolving ocean reanalysis: The eddy field, seasonal and interannual variability[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2018, 157/158: 11-26.
DOI URL |
[5] | RIDGWAY K R, CONDIE S A. The 5500-km-long boundary flow off western and southern Australia[J]. Journal of Geophysical Research, 2004, 109(C4): C04017. |
[6] |
MIDDLETON J F, BYE J A T. A review of the shelf-slope circulation along Australia’s southern shelves: Cape Leeuwin to Portland[J]. Progress in Oceanography, 2007, 75(1): 1-41.
DOI URL |
[7] |
GODFREY J S, VAUDREY D J, HAHN S D. Observations of the shelf-edge current south of Australia, winter 1982[J]. Journal of Physical Oceanography, 1986, 16(4): 668-679.
DOI URL |
[8] |
CRESSWELL G R, GRIFFIN D A. The Leeuwin Current, eddies and sub-Antarctic waters off south-western Australia[J]. Marine and Freshwater Research, 2004, 55(3): 267.
DOI URL |
[9] | SEBILLE E V, ENGLAND M H, ZIKA J D, et al. Tasman leakage in a fine-resolution ocean model[J]. Geophysical Research Letters, 2012, 39(6): L06601. |
[10] |
PILO G S, MATA M M, AZEVEDO J L L. Eddy surface properties and propagation at Southern Hemisphere western boundary current systems[J]. Ocean Science, 2015, 11(4): 629-641.
DOI URL |
[11] |
EDEN C, BÖNING C. Sources of eddy kinetic energy in the Labrador Sea[J]. Journal of Physical Oceanography, 2002, 32(12): 3346-3363.
DOI URL |
[12] |
CHEN X A, QIU B, CHEN S M, et al. Seasonal eddy kinetic energy modulations along the North Equatorial Countercurrent in the western Pacific[J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 6351-6362.
DOI URL |
[13] |
ZHENG S J, FENG M, DU Y, et al. Interannual variability of eddy kinetic energy in the subtropical southeast Indian Ocean associated with the El Niño-Southern Oscillation[J]. Journal of Geophysical Research: Oceans, 2018, 123(2): 1048-1061.
DOI URL |
[14] | ZHANG N N, LIU G Q, LIU Q Y, et al. Spatiotemporal variations of mesoscale eddies in the southeast Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2020, 125(8): e2019JC015712. |
[15] |
CHU X Q, DONG C M, QI Y Q. The influence of ENSO on an oceanic eddy pair in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2017, 122(3): 1643-1652.
DOI URL |
[16] |
ZHENG S J, FENG M, DU Y, et al. Annual and interannual variability of the tropical instability vortices in the equatorial eastern Pacific observed from Lagrangian surface drifters[J]. Journal of Climate, 2016, 29(24): 9163-9177.
DOI URL |
[17] | 曾伟强, 张书文, 马永贵, 等. 1993—2017年南海中尺度涡特征分析[J]. 广东海洋大学学报, 2019, 39(5):96-106. |
ZENG W Q, ZHANG S W, MA Y G, et al. Analysis of mesoscale eddy characteristics in the South China Sea from 1993 to 2017[J]. Journal of Guangdong Ocean University, 2019, 39(5): 96-106. | |
[18] |
FENG M, MCPHADEN M J, XIE S P, et al. La Niña forces unprecedented Leeuwin Current warming in 2011[J]. Scientific Reports, 2013, 3: 1277.
DOI PMID |
[19] |
WIJFFELS S, MEYERS G. An intersection of oceanic waveguides: Variability in the Indonesian throughflow region[J]. Journal of Physical Oceanography, 2004, 34(5): 1232-1253.
DOI URL |
[20] |
FAN L L, XU J J, HAN L G. Impacts of onset time of El Niño events on summer rainfall over southeastern Australia during 1980-2017[J]. Atmosphere, 2019, 10(3): 139.
DOI URL |
[21] | 茅威. ENSO与IOD对澳大利亚南半球冬春季干旱的影响[D]. 南京: 南京信息工程大学, 2021. |
MAO W. Effects of ENSO and IOD on drought in austral winter and spring of Australia[D]. Nanjing: Nanjing University of Information Science & Technology, 2021. | |
[22] | 王忠鹏. 南半球热带外气候变量与两种形态ENSO的联系及ENSO与SAM相关关系研究[D]. 上海: 上海交通大学, 2019. |
WANG Z P. Study on the linkage of the southern hemisphere extratropical climate variability to two types of ENSO and the relationship between ENSO and SAM[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
[23] |
PEPLER A, TIMBAL B, RAKICH C, et al. Indian Ocean dipole overrides ENSO’s influence on cool season rainfall across the eastern seaboard of Australia[J]. Journal of Climate, 2014, 27(10): 3816-3826.
DOI URL |
[24] |
CAI W J, VAN RENSCH P. Austral summer teleconnections of Indo-Pacific variability: Their nonlinearity and impacts on Australian climate[J]. Journal of Climate, 2013, 26(9): 2796-2810.
DOI URL |
[25] | TRENBERTH K E, CARON J M, STEPANIAK D P, et al. Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D8): 4065. |
[26] | 杨丽娜, 吴奇儒, 陈旺, 等. 太平洋南赤道流体积输运的年际变异[J]. 广东海洋大学学报, 2021, 41(6):36-43. |
YANG L N, WU Q R, CHEN W, et al. Interannual variability of the volume transport of the Pacific south equatorial current[J]. Journal of Guangdong Ocean University, 2021, 41(6): 36-43. | |
[27] |
REN H L, LU B, WAN J H, et al. Identification standard for ENSO events and its application to climate monitoring and prediction in China[J]. Journal of Meteorological Research, 2018, 32(6): 923-936.
DOI |
[28] | 郭飞燕. 热带印度洋海温年际变化主模态的分类及其与ENSO的联系[D]. 青岛: 中国海洋大学, 2015. |
GUO F Y. Classfication of the SST interannual variability major modes of tropical Indian Ocean and their relations with ENSO[D]. Qingdao: Ocean University of China, 2015. | |
[29] | 殷鑫, 吴小飞. 前冬印度洋海盆一致模对ENSO衰减期华南春季降水的影响[J]. 高原山地气象研究, 2022, 42(4):49-59. |
YIN X, WU X F. Influence of Indian Ocean Basin on South China spring rainfall during the decaying phase of ENSO in preceding winter[J]. Plateau and Mountain Meteorology Research, 2022, 42(4): 49-59. |
[1] | 邢梦玲, 王迪峰, 何贤强, 白雁, 成印河. 基于Landsat遥感数据的田湾核电站温排水时空特征研究[J]. 海洋学研究, 2020, 38(4): 72-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||