海洋学研究 ›› 2023, Vol. 41 ›› Issue (3): 56-72.DOI: 10.3969/j.issn.1001-909X.2023.03.006
邓韬1,2(), 许冬1,2,*(), 肖婷露1,2, 叶黎明1,2, 章伟艳1,2
收稿日期:
2022-10-31
修回日期:
2023-03-21
出版日期:
2023-09-15
发布日期:
2023-10-24
通讯作者:
*许冬(1982—),男,副研究员,主要从事海洋地质学研究,E-mail:xudongsio@126.com。
作者简介:
邓韬(1997—),男,湖南省常德市人,主要从事海洋地质学研究,E-mail:524682234@qq.com。
基金资助:
DENG Tao1,2(), XU Dong1,2,*(), XIAO Tinglu1,2, YE Liming1,2, ZHANG Weiyan1,2
Received:
2022-10-31
Revised:
2023-03-21
Online:
2023-09-15
Published:
2023-10-24
摘要:
深海沉积物中的黏土矿物组合特征能反映物源区古气候与古环境的变化。前人已有较多关于马里亚纳海沟以西太平洋沉积物黏土矿物组合特征方面的研究,但对马里亚纳海沟以东黏土矿物组合特征的研究较少,从而限制了对亚洲大陆风尘输入与太平洋深海沉积环境之间关系的深入认识。本文以2019年大洋54航次在西太平洋马尔库斯-威克海山区采集到的31个表层样和1个柱状样为研究对象,结合收集到的西太平洋海域及附近地区的数据,开展了黏土矿物组成与分布特征、物质来源等研究。结果表明,研究区表层沉积物中的黏土矿物类型以伊利石为主,含量平均值为69%;绿泥石和高岭石次之,含量平均值分别为16%与11%;蒙脱石最少,含量平均值为3%。柱状样黏土矿物组合与表层沉积物基本一致,但在250 cm深度以下,蒙脱石含量明显增高,伊利石含量相对减少。物源分析表明,亚洲风尘是研究区伊利石的主要物源,高岭石和绿泥石的主要物源可能也是亚洲风尘,东亚冬季风是这些风尘物质的主要搬运营力。沉积物中的蒙脱石则主要由海底火山物质风化形成。P04柱上部伊利石含量增加而蒙脱石含量降低的变化响应了中更新世以来亚洲风尘输入量增加的过程。
中图分类号:
邓韬, 许冬, 肖婷露, 叶黎明, 章伟艳. 西太平洋海山盆地沉积物黏土矿物特征及其指示意义[J]. 海洋学研究, 2023, 41(3): 56-72.
DENG Tao, XU Dong, XIAO Tinglu, YE Liming, ZHANG Weiyan. Clay mineral characteristics of sediments in the seamount basin of the Western Pacific and its indicative significance[J]. Journal of Marine Sciences, 2023, 41(3): 56-72.
站位 | 经度 | 纬度 | 黏土矿物含量/% | 伊利石化学指数 | 伊利石结晶度指数 | |||
---|---|---|---|---|---|---|---|---|
蒙脱石 | 伊利石 | 高岭石 | 绿泥石 | |||||
P01 | 160.30°E | 23.00°N | 3 | 69 | 11 | 17 | 0.41 | 0.31 |
P02 | 160.30°E | 22.19°N | 2 | 70 | 11 | 16 | 0.37 | 0.29 |
P03 | 160.30°E | 21.38°N | 2 | 71 | 12 | 15 | 0.34 | 0.30 |
P04 | 160.30°E | 20.54°N | 4 | 67 | 13 | 15 | 0.38 | 0.28 |
P05 | 160.26°E | 19.71°N | 1 | 75 | 12 | 12 | 0.27 | 0.36 |
P06 | 160.30°E | 18.90°N | 11 | 61 | 10 | 17 | 0.41 | 0.29 |
P07 | 161.15°E | 23.03°N | 2 | 70 | 13 | 16 | 0.37 | 0.29 |
P08 | 161.12°E | 22.18°N | 8 | 66 | 9 | 17 | 0.43 | 0.28 |
P09 | 161.12°E | 21.36°N | 4 | 70 | 12 | 14 | 0.37 | 0.30 |
P10 | 161.29°E | 20.48°N | 3 | 72 | 11 | 15 | 0.36 | 0.30 |
P11 | 161.12°E | 19.72°N | 6 | 67 | 10 | 17 | 0.42 | 0.29 |
P12 | 161.15°E | 18.93°N | 4 | 69 | 10 | 18 | 0.39 | 0.30 |
P13 | 161.94°E | 23.00°N | 3 | 69 | 12 | 16 | 0.37 | 0.28 |
P14 | 161.94°E | 22.18°N | 3 | 69 | 12 | 15 | 0.37 | 0.28 |
P15 | 161.95°E | 21.37°N | 3 | 70 | 10 | 17 | 0.40 | 0.30 |
P16 | 161.94°E | 20.54°N | 3 | 70 | 12 | 16 | 0.35 | 0.29 |
P17 | 161.91°E | 19.68°N | 2 | 75 | 10 | 13 | 0.32 | 0.38 |
P18 | 161.89°E | 18.89°N | 7 | 66 | 12 | 15 | 0.39 | 0.28 |
P19 | 162.81°E | 23.00°N | 2 | 71 | 11 | 16 | 0.36 | 0.29 |
P20 | 162.76°E | 22.18°N | 3 | 70 | 10 | 18 | 0.38 | 0.28 |
P21 | 162.76°E | 21.42°N | 2 | 71 | 12 | 15 | 0.37 | 0.29 |
P22 | 162.76°E | 20.52°N | 2 | 71 | 12 | 15 | 0.38 | 0.29 |
P23 | 162.76°E | 19.72°N | 3 | 69 | 12 | 16 | 0.40 | 0.30 |
P24 | 162.76°E | 18.90°N | 3 | 67 | 10 | 20 | 0.41 | 0.27 |
P25 | 163.58°E | 23.00°N | 1 | 70 | 12 | 17 | 0.38 | 0.29 |
P26 | 163.58°E | 22.18°N | 5 | 67 | 12 | 16 | 0.37 | 0.29 |
P27 | 163.58°E | 21.35°N | 4 | 70 | 11 | 15 | 0.36 | 0.28 |
P31 | 164.40°E | 23.00°N | 2 | 70 | 12 | 16 | 0.36 | 0.27 |
P32 | 164.40°E | 22.18°N | 5 | 69 | 9 | 18 | 0.39 | 0.30 |
P33 | 165.22°E | 23.00°N | 2 | 70 | 9 | 19 | 0.40 | 0.30 |
P35 | 166.04°E | 23.00°N | 1 | 73 | 8 | 18 | 0.38 | 0.31 |
表1 表层沉积物取样位置与黏土矿物特征
Tab.1 Sampling sites and clay mineral characteristics of surface sediments
站位 | 经度 | 纬度 | 黏土矿物含量/% | 伊利石化学指数 | 伊利石结晶度指数 | |||
---|---|---|---|---|---|---|---|---|
蒙脱石 | 伊利石 | 高岭石 | 绿泥石 | |||||
P01 | 160.30°E | 23.00°N | 3 | 69 | 11 | 17 | 0.41 | 0.31 |
P02 | 160.30°E | 22.19°N | 2 | 70 | 11 | 16 | 0.37 | 0.29 |
P03 | 160.30°E | 21.38°N | 2 | 71 | 12 | 15 | 0.34 | 0.30 |
P04 | 160.30°E | 20.54°N | 4 | 67 | 13 | 15 | 0.38 | 0.28 |
P05 | 160.26°E | 19.71°N | 1 | 75 | 12 | 12 | 0.27 | 0.36 |
P06 | 160.30°E | 18.90°N | 11 | 61 | 10 | 17 | 0.41 | 0.29 |
P07 | 161.15°E | 23.03°N | 2 | 70 | 13 | 16 | 0.37 | 0.29 |
P08 | 161.12°E | 22.18°N | 8 | 66 | 9 | 17 | 0.43 | 0.28 |
P09 | 161.12°E | 21.36°N | 4 | 70 | 12 | 14 | 0.37 | 0.30 |
P10 | 161.29°E | 20.48°N | 3 | 72 | 11 | 15 | 0.36 | 0.30 |
P11 | 161.12°E | 19.72°N | 6 | 67 | 10 | 17 | 0.42 | 0.29 |
P12 | 161.15°E | 18.93°N | 4 | 69 | 10 | 18 | 0.39 | 0.30 |
P13 | 161.94°E | 23.00°N | 3 | 69 | 12 | 16 | 0.37 | 0.28 |
P14 | 161.94°E | 22.18°N | 3 | 69 | 12 | 15 | 0.37 | 0.28 |
P15 | 161.95°E | 21.37°N | 3 | 70 | 10 | 17 | 0.40 | 0.30 |
P16 | 161.94°E | 20.54°N | 3 | 70 | 12 | 16 | 0.35 | 0.29 |
P17 | 161.91°E | 19.68°N | 2 | 75 | 10 | 13 | 0.32 | 0.38 |
P18 | 161.89°E | 18.89°N | 7 | 66 | 12 | 15 | 0.39 | 0.28 |
P19 | 162.81°E | 23.00°N | 2 | 71 | 11 | 16 | 0.36 | 0.29 |
P20 | 162.76°E | 22.18°N | 3 | 70 | 10 | 18 | 0.38 | 0.28 |
P21 | 162.76°E | 21.42°N | 2 | 71 | 12 | 15 | 0.37 | 0.29 |
P22 | 162.76°E | 20.52°N | 2 | 71 | 12 | 15 | 0.38 | 0.29 |
P23 | 162.76°E | 19.72°N | 3 | 69 | 12 | 16 | 0.40 | 0.30 |
P24 | 162.76°E | 18.90°N | 3 | 67 | 10 | 20 | 0.41 | 0.27 |
P25 | 163.58°E | 23.00°N | 1 | 70 | 12 | 17 | 0.38 | 0.29 |
P26 | 163.58°E | 22.18°N | 5 | 67 | 12 | 16 | 0.37 | 0.29 |
P27 | 163.58°E | 21.35°N | 4 | 70 | 11 | 15 | 0.36 | 0.28 |
P31 | 164.40°E | 23.00°N | 2 | 70 | 12 | 16 | 0.36 | 0.27 |
P32 | 164.40°E | 22.18°N | 5 | 69 | 9 | 18 | 0.39 | 0.30 |
P33 | 165.22°E | 23.00°N | 2 | 70 | 9 | 19 | 0.40 | 0.30 |
P35 | 166.04°E | 23.00°N | 1 | 73 | 8 | 18 | 0.38 | 0.31 |
区域和站位 | 黏土矿物含量/% | 数据来源 | |||
---|---|---|---|---|---|
蒙脱石 | 伊利石 | 高岭石+ 绿泥石 | |||
本研究区 | 3 | 69 | 27 | 本研究① | |
C海盆 | 16 | 64 | 20 | 文献[ | |
M海盆 | 22 | 62 | 16 | 文献[ | |
北太平洋和白令海 | 10 | 47 | 43 | 文献[ | |
白令海SO202-18-3站 与SO202-18-6站 | 11 | 49 | 40 | 文献[ | |
中太平洋PC15 | 68 | 13 | 19 | 文献[ | |
南太平洋 | 53 | 21 | 26 | 文献[ | |
中国黄土 | 1 | 78 | 21 | 文献[ | |
南海北部ODP1146站 | 34 | 45 | 22 | 文献[ | |
珠江 | 1 | 52 | 47 | 文献[ | |
长江 | 5 | 69 | 25 | 文献[ | |
台湾浊水溪 | 0 | 69 | 31 | 文献[ | |
东海陆架 | 12 | 60 | 29 | 文献[ | |
南海北部陆架 | 12 | 50 | 38 | 文献[ | |
冲绳海槽 | 25 | 61 | 13 | 文献[ | |
四国海盆 | 15 | 60 | 25 | 文献[ | |
西菲律宾海 | 85KL | 23 | 56 | 21 | 文献[ |
I8孔 | 28 | 40 | 32 | 文献[ | |
XT4孔 | 15 | 52 | 33 | 文献[ | |
平均 | 22 | 49 | 29 | 文献[15,31-32]① | |
帕里西维拉 海盆 | 南部 | 49 | 35 | 16 | 文献[ |
西北部 | 35 | 47 | 18 | 文献[ | |
F090815 | 53 | 34 | 13 | 文献[ | |
F100609 | 35 | 52 | 13 | 文献[ | |
F090102 | 34 | 49 | 17 | 文献[ | |
F090203 | 42 | 42 | 16 | 文献[ | |
F090815 | 32 | 49 | 19 | 文献[ | |
F100214 | 27 | 67 | 6 | 文献[ | |
F100705 | 16 | 65 | 19 | 文献[ | |
F100901 | 21 | 61 | 18 | 文献[ | |
F101012 | 35 | 52 | 13 | 文献[ | |
F101101 | 74 | 18 | 8 | 文献[ | |
PV091101 | 47 | 39 | 14 | 文献[ | |
PV090510 | 49 | 36 | 15 | 文献[ | |
吕宋岛东 | Ph03 | 47 | 6 | 47 | 文献[ |
Ph04 | 50 | 3 | 47 | 文献[ | |
平均 | 49 | 5 | 47 | 文献[ | |
菲律宾海沟 附近 | WP1 | 37 | 16 | 47 | 文献[ |
WP2 | 54 | 7 | 40 | 文献[ | |
WP40 | 56 | 7 | 37 | 文献[ | |
平均 | 49 | 10 | 41 | 文献[ | |
马里亚纳 海槽 | 61KL | 85 | 2 | 13 | 文献[ |
57KL | 48 | 27 | 25 | 文献[ | |
75 | 15 | 10 | 文献[ | ||
平均 | 69 | 15 | 16 | 文献[ |
表2 研究区与太平洋其他海域及附近地区的黏土矿物含量平均组成对比
Tab.2 The average content composition of clay minerals in the study area and other sea areas in the Pacific and nearby areas
区域和站位 | 黏土矿物含量/% | 数据来源 | |||
---|---|---|---|---|---|
蒙脱石 | 伊利石 | 高岭石+ 绿泥石 | |||
本研究区 | 3 | 69 | 27 | 本研究① | |
C海盆 | 16 | 64 | 20 | 文献[ | |
M海盆 | 22 | 62 | 16 | 文献[ | |
北太平洋和白令海 | 10 | 47 | 43 | 文献[ | |
白令海SO202-18-3站 与SO202-18-6站 | 11 | 49 | 40 | 文献[ | |
中太平洋PC15 | 68 | 13 | 19 | 文献[ | |
南太平洋 | 53 | 21 | 26 | 文献[ | |
中国黄土 | 1 | 78 | 21 | 文献[ | |
南海北部ODP1146站 | 34 | 45 | 22 | 文献[ | |
珠江 | 1 | 52 | 47 | 文献[ | |
长江 | 5 | 69 | 25 | 文献[ | |
台湾浊水溪 | 0 | 69 | 31 | 文献[ | |
东海陆架 | 12 | 60 | 29 | 文献[ | |
南海北部陆架 | 12 | 50 | 38 | 文献[ | |
冲绳海槽 | 25 | 61 | 13 | 文献[ | |
四国海盆 | 15 | 60 | 25 | 文献[ | |
西菲律宾海 | 85KL | 23 | 56 | 21 | 文献[ |
I8孔 | 28 | 40 | 32 | 文献[ | |
XT4孔 | 15 | 52 | 33 | 文献[ | |
平均 | 22 | 49 | 29 | 文献[15,31-32]① | |
帕里西维拉 海盆 | 南部 | 49 | 35 | 16 | 文献[ |
西北部 | 35 | 47 | 18 | 文献[ | |
F090815 | 53 | 34 | 13 | 文献[ | |
F100609 | 35 | 52 | 13 | 文献[ | |
F090102 | 34 | 49 | 17 | 文献[ | |
F090203 | 42 | 42 | 16 | 文献[ | |
F090815 | 32 | 49 | 19 | 文献[ | |
F100214 | 27 | 67 | 6 | 文献[ | |
F100705 | 16 | 65 | 19 | 文献[ | |
F100901 | 21 | 61 | 18 | 文献[ | |
F101012 | 35 | 52 | 13 | 文献[ | |
F101101 | 74 | 18 | 8 | 文献[ | |
PV091101 | 47 | 39 | 14 | 文献[ | |
PV090510 | 49 | 36 | 15 | 文献[ | |
吕宋岛东 | Ph03 | 47 | 6 | 47 | 文献[ |
Ph04 | 50 | 3 | 47 | 文献[ | |
平均 | 49 | 5 | 47 | 文献[ | |
菲律宾海沟 附近 | WP1 | 37 | 16 | 47 | 文献[ |
WP2 | 54 | 7 | 40 | 文献[ | |
WP40 | 56 | 7 | 37 | 文献[ | |
平均 | 49 | 10 | 41 | 文献[ | |
马里亚纳 海槽 | 61KL | 85 | 2 | 13 | 文献[ |
57KL | 48 | 27 | 25 | 文献[ | |
75 | 15 | 10 | 文献[ | ||
平均 | 69 | 15 | 16 | 文献[ |
图11 西太平洋海域表层沉积物黏土矿物基本格局 (数据来源见表2。)
Fig.11 Basic pattern of clay minerals in surface sediments in the Western Pacific (The data sources are shown in Table 2.)
图12 亚洲和全球气候变化指标的对比 (LR04站δ18O参考自文献[57];华北黄土堆积速率参考自文献[58];北太平洋风尘通量参考自文献[59];U1430站数据参考自文献[13];PV090510站数据参考自文献[14]和文献[56]。)
Fig.12 Comparisons of Asian and global climate change indicators (δ18O of LR04 station from reference[57];Loess mass accumulation rate of Loess Plateau from reference[58];North Pacific Eolian mass accumulation rate form reference[59];data of U1430 station from reference[13];data of PV090510 station from reference[14] and [56].)
[1] | 王银, 吕士辉, 苏新, 等. 西北太平洋多金属结核区沉积物黏土矿物特征[J]. 中国有色金属学报, 2021, 31(10):2696-2712. |
WANG Y, LÜ S H, SU X, et al. Assemblage of clay minerals at polymetallic nodules contract area in Northwest Pacific Ocean[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2696-2712. | |
[2] | 明洁, 李安春, 孟庆勇, 等. 东菲律宾海帕里西维拉海盆第四纪黏土矿物组合特征及物源分析[J]. 海洋地质与第四纪地质, 2012, 32(4):139-148. |
MING J, LI A C, MENG Q Y, et al. Quaternary assemblage characteristic and provenance of clay minerals in the Parecevela basin of the east Philippine Sea[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 139-148. | |
[3] |
刘华华, 蒋富清, 周烨, 等. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3):286-297.
DOI |
LIU H H, JIANG F Q, ZHOU Y, et al. Provenance of clay minerals in the Amami Sankaku Basin and their paleoclimate implications since late Pleistocene[J]. Advances in Earth Science, 2016, 31(3): 286-297.
DOI |
|
[4] | EHRMANN W. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics[J]. Palaeogeo-graphy, Palaeoclimatology, Palaeoecology, 1998, 139(3/4): 213-231. |
[5] |
LIU Z F, COLIN C, LI X J, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport[J]. Marine Geology, 2010, 277(1-4): 48-60.
DOI URL |
[6] | 邱忠荣, 马维林, 张霄宇, 等. 西北太平洋表层沉积物地球化学特征及其物源指示意义[J]. 浙江大学学报:理学版, 2020, 47(3):345-354,369. |
QIU Z R, MA W L, ZHANG X Y, et al. Geochemical characteristics of surface sediments in Northwest Pacific and their indication of material sources[J]. Journal of Zhejiang University: Science Edition, 2020, 47(3): 345-354, 369. | |
[7] | CHAMLEY H. Clay sedimentology[M]. Berlin: Springer-Verlag, 1989. |
[8] | 吕华华. 赤道北太平洋粘土沉积物的标型特征及其应用研究[D]. 青岛: 中国科学院海洋研究所, 2005. |
LÜ H H. Study on the typical characteristics and application of clay sediments from the Northern Equatorial Pacific[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2005. | |
[9] | 黄杰, 万世明, 张国良, 等. 海底地形特征对东菲律宾海表层黏土矿物分布的影响[J]. 海洋地质与第四纪地质, 2017, 37(1):77-85. |
HUANG J, WAN S M, ZHANG G L, et al. Impact of seafloor topography on distribution of clay minerals in the East Philippines Sea[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 77-85. | |
[10] |
WANG J Z, LI A C, XU K H, et al. Clay mineral and grain size studies of sediment provenances and paleoenvironment evolution in the middle Okinawa Trough since 17 ka[J]. Marine Geology, 2015, 366: 49-61.
DOI URL |
[11] | 田旭, 胡邦琦, 王飞飞, 等. 末次冰消期(1.9万年)以来冲绳海槽中部黏土矿物来源及其环境响应[J]. 中国地质, 2020, 47(5):1501-1511. |
TIAN X, HU B Q, WANG F F, et al. Clay mineral provenance and its response to paleochimate in the central Okinawa Trough since the last Deglaciation(19 ka)[J]. Geology in China, 2020, 47(5): 1501-1511. | |
[12] | 刘志飞, 赵玉龙, 王轶婕, 等. 南海第四纪东亚季风演化的粘土矿物指标[J]. 第四纪研究, 2017, 37(5):921-933. |
LIU Z F, ZHAO Y L, WANG Y J, et al. Clay mineralogical proxy of the East Asian monsoon evolution during the quaternary in the South China Sea[J]. Quaternary Sciences, 2017, 37(5): 921-933. | |
[13] |
SHEN X Y, WAN S M, FRANCE-LANORD C, et al. History of Asian eolian input to the Sea of Japan since 15 Ma: Links to Tibetan uplift or globalcooling?[J]. Earth and Planetary Science Letters, 2017, 474: 296-308.
DOI URL |
[14] | 明洁. 东菲律宾海帕里西维拉海盆第四纪沉积特征和物质来源及其古环境意义[D]. 青岛: 中国科学院海洋研究所, 2013. |
MING J. The characteristics and provenance of the sediment in the Parece Vela Basin since the Quaternary and their environment implications[D]. Qingdao: Institute of Ocea-nology, Chinese Academy of Sciences, 2013. | |
[15] | 丁雪, 胡邦琦, 徐方建, 等. 晚上新世以来菲律宾海盆XT4孔黏土矿物特征及其古环境意义[J]. 海洋地质与第四纪地质, 2021, 41(1):42-51. |
DING X, HU B Q, XU F J, et al. Evolution of clay minerals assemblages since Late Pliocene and its paleoenvironmental implications: Evidence from Core XT4 of the Philippine Sea Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 42-51. | |
[16] | 任江波, 何高文, 姚会强, 等. 西太平洋海山富钴结壳的稀土和铂族元素特征及其意义[J]. 地球科学, 2016, 41(10):1745-1757. |
REN J B, HE G W, YAO H Q, et al. Geochemistry and significance of REE and PGE of the cobalt-rich crusts from West Pacific Ocean seamounts[J]. Earth Science, 2016, 41(10): 1745-1757. | |
[17] |
KAWABE M, FUJIO S. Pacific Ocean circulation based on observation[J]. Journal of Oceanography, 2010, 66(3): 389-403.
DOI URL |
[18] | 王薇. 西北太平洋现代风尘特征及其物源与输运机制对比研究[D]. 青岛: 中国科学院海洋研究所, 2019. |
WANG W. Comparison of the characteristics, provenances, and transport mechanisms of modern eolian dust in the Northwest Pacific[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2019. | |
[19] |
BISCAYE P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7): 803-832.
DOI URL |
[20] | 熊志方, 李铁刚, 翟滨, 等. 低纬度西太平洋末次冰期Ethmodiscus rex硅藻席粘土矿物特征及形成机制启示[J]. 地球科学, 2010, 35(4):551-562. |
XIONG Z F, LI T G, ZHAI B, et al. Clay mineral characteristics of Ethmodiscus rex diatom mats from low-latitude western Pacific during the last glacial and implications for their formation[J]. Earth Science, 2010, 35(4): 551-562. | |
[21] | 杨雅秀, 张乃娴, 苏昭冰, 等. 中国粘土矿物[M]. 北京: 地质出版社, 1994. |
YANG Y X, ZHANG N X, SU Z B, et al. Clay minerals of China[M]. Beijing: Geological Publishing House, 1994. | |
[22] | CHAMLEY H. Clay sedimentation and paleoenvironment in the Shikoku Basin since the middle Miocene (deep sea drilling project leg 58,North Philippine Sea)[M]//Initial Reports of the Deep Sea Drilling Project. Washington: U.S. Government Printing Office, 1981, 58: 669-678. |
[23] |
LIU Z F, ZHAO Y L, COLIN C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238-273.
DOI URL |
[24] | 靳宁. 帕里西维拉海盆西北部海域粘土矿物分布特征研究[D]. 青岛: 中国科学院海洋研究所, 2006. |
JIN N. Clay mineral distribution in the sediments of the northwest Parece Vela Basin[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2006. | |
[25] |
WANG R, BISKABORN B K, RAMISCH A, et al. Modern modes of provenance and dispersal of terrigenous sediments in the North Pacific and Bering Sea: Implications and perspectives for palaeoenvironmental reconstructions[J]. Geo-Marine Letters, 2016, 36(4): 259-270.
DOI URL |
[26] |
WANG R, KUHN G, GONG X, et al. Deglacial land-ocean linkages at the Alaskan continental margin in the Bering Sea[J]. Frontiers in Earth Science, 2021, 9: 712415.
DOI URL |
[27] |
GRIFFIN J J, WINDOM H, GOLDBERG E D. The distribution of clay minerals in the world ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1968, 15(4): 433-459.
DOI URL |
[28] | 万世明, 李安春, 胥可辉, 等. 南海北部中新世以来粘土矿物特征及东亚古季风记录[J]. 地球科学, 2008, 33(3):289-300. |
WAN S M, LI A C, XU K H, et al. Characteristics of clay minerals in the northern South China Sea and its implications for evolution of East Asian monsoon since Miocene[J]. Earth Science, 2008, 33(3): 289-300. | |
[29] | 李国刚. 中国近海表层沉积物中粘土矿物的组成、分布及其地质意义[J]. 海洋学报, 1990, 12(4):470-479. |
LI G G. Composition, distribution and geological significance of clay minerals in surface sediments off the coast of China[J]. Acta Oceanologica Sinica, 1990, 12(4): 470-479. | |
[30] | NAGEL U, MULLER G, SCHUMANN D. Mineralogy of sediments cored during Deep Sea Drilling Project Legs 58-60 in the North and South Philippine Sea: Results of X-ray diffraction analyses[M]//Initial Reports of the Deep Sea Drilling Project. Washington: U.S. Government Printing Office, 1981, 60: 415-435. |
[31] | 张德玉. 马里亚纳海槽和西菲律宾海盆更新世以来沉积物中的粘土矿物[J]. 沉积学报, 1993, 11(1):111-120. |
ZHANG D Y. Clay mineralogy of the sediments deposited since the Pleistocene in the Mariana trough and the West Philippine Basin[J]. Acta Sedimentologica Sinica, 1993, 11(1): 111-120. | |
[32] |
舒雨婷, 郑玉龙, 许冬, 等. 西菲律宾海盆I8孔黏土矿物的物源分析[J]. 海洋学研究, 2015, 33(4):61-69.
DOI |
SHU Y T, ZHENG Y L, XU D, et al. The provenance of clay minerals in core I8 from the West Philippine Basin[J]. Journal of Marine Sciences, 2015, 33(4): 61-69. | |
[33] | 靳宁, 李安春, 刘海志, 等. 帕里西维拉海盆西北部表层沉积物中粘土矿物的分布特征及物源分析[J]. 海洋与湖沼, 2007, 38(6):504-511. |
JIN N, LI A C, LIU H Z, et al. Clay minerals in surface sediment of the northwest Parece Vela Basin: Distribution and provenance[J]. Oceanologia et Limnologia Sinica, 2007, 38(6): 504-511. | |
[34] | 石学法, 陈丽蓉, 李坤业, 等. 西菲律宾海西部海域粘土沉积物的成因矿物学研究[J]. 海洋地质与第四纪地质, 1995, 15(2):61-72. |
SHI X F, CHEN L R, LI K Y, et al. Study on minerageny of the clay sediment in the west of Philippine Sea[J]. Marine Geology & Quaternary Geology, 1995, 15(2):61-72. | |
[35] | KOLLA V, NADLER L, BONATTI E. Clay mineral distri-butions in surface sediments of the Philippine Sea[J]. Oceanologica Acta, 1980, 3(2): 245-250. |
[36] | 俞旭, 江超华. 现代海洋沉积矿物及其X射线衍射研究[M]. 北京: 科学出版社, 1984:113-156. |
YU X, JIANG C H. Study on modern marine sedimentary minerals and their X-ray diffraction[M]. Beijing: Science Press, 1984: 113- 156. | |
[37] |
ARNOLD E, MERRILL J, LEINEN M, et al. The effect of source area and atmospheric transport on mineral aerosol collected over the North Pacific Ocean[J]. Global and Planetary Change, 1998, 18(3/4): 137-159.
DOI URL |
[38] |
LEINEN M, PROSPERO J M, ARNOLD E, et al. Mineralogy of aeolian dust reaching the North Pacific Ocean: 1. Sampling and analysis[J]. Journal of Geophysical Research, 1994, 99(D10): 21017-21023.
DOI URL |
[39] |
GINGELE F X, DE DECKKER P, HILLENBRAND C D. Clay mineral distribution in surface sediments between Indonesia and NW Australia—source and transport by ocean currents[J]. Marine Geology, 2001, 179(3/4): 135-146.
DOI URL |
[40] | 池野, 李安春, 蒋富清, 等. 吕宋岛东部海域黏土矿物组合特征及物源分析[J]. 海洋科学, 2009, 33(9):80-88. |
CHI Y, LI A C, JIANG F Q, et al. Assemblage and provenance of clay minerals off the east of Luzon Island[J]. Marine Sciences, 2009, 33(9): 80-88. | |
[41] |
LIU Z F, TUO S T, COLIN C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation[J]. Marine Geology, 2008, 255(3/4): 149-155.
DOI URL |
[42] |
LIU Z F, ZHAO Y L, COLIN C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments[J]. Applied Geochemistry, 2009, 24(11): 2195-2205.
DOI URL |
[43] | 侯乔琨, 黄菲, 陈峥. 北半球冬季高空西风急流环路 “闭合-断开” 的年际振荡及其影响机制[J]. 中国海洋大学学报:自然科学版, 2022, 52(10):34-46. |
HOU Q K, HUANG F, CHEN Z. Northern hemisphere high jet circuit “on-off” oscillation in the boreal winter[J]. Periodical of Ocean University of China, 2022, 52(10): 34-46. | |
[44] |
XU Z K, LI T G, COLIN C, et al. Seasonal variations in the siliciclastic fluxes to the western Philippine Sea and their impacts on seawater εNd values inferred from one year of in situ observations above Benham Rise[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6688-6702.
DOI URL |
[45] | 王薇, 徐兆凯, 冯旭光, 等. 西菲律宾海现代风尘物质组成特征及其物源指示意义[J]. 地球科学, 2020, 45(2):559-568. |
WANG W, XU Z K, FENG X G, et al. Composition characteristics and provenance implication of modern dust in the west Philippine Sea[J]. Earth Science, 2020, 45(2): 559-568. | |
[46] |
YU Z J, WAN S M, COLIN C, et al. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: New insights from high-resolution clay mineral records in the West Philippine Sea[J]. Earth and Planetary Science Letters, 2016, 446: 45-55.
DOI URL |
[47] | 刘华华. 中新世以来奄美三角盆地沉积物中粘土矿物的来源[D]. 青岛: 中国科学院海洋研究所, 2016. |
LIU H H. Provenance of clay minerals in the sediments from the Amami Sankaku Basin since Miocene[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2016. | |
[48] | 师育新, 戴雪荣, 宋之光, 等. 我国不同气候带黄土中粘土矿物组合特征分析[J]. 沉积学报, 2005, 23(4):690-695. |
SHI Y X, DAI X R, SONG Z G, et al. Characteristics of clay mineral assemblages and their spatial distribution of Chinese loess in different climatic zones[J]. Acta Sedimen-tologica Sinica, 2005, 23(4): 690-695. | |
[49] |
SUN Y B, YAN Y, NIE J S, et al. Source-to-sink fluctuations of Asian eolian deposits since the late Oligocene[J]. Earth-Science Reviews, 2020, 200: 102963.
DOI URL |
[50] |
NIE J S, STEVENS T, RITTNER M, et al. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment[J]. Nature Communications, 2015, 6: 8511.
DOI PMID |
[51] |
LICHT A, PULLEN A, KAPP P, et al. Eolian cannibalism: Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau[J]. Geological Society of America Bulletin, 2016, 128(5/6): 944-956.
DOI URL |
[52] |
HAN L, HAO Q Z, QIAO Y S, et al. Geochemical evidence for provenance diversity of loess in Southern China and its implications for glacial aridification of the northern subtropical region[J]. Quaternary Science Reviews, 2019, 212: 149-163.
DOI URL |
[53] | 刘季花, 石学法, 陈丽蓉, 等. 东太平洋沉积物中粘土组分的REEs和εNd:粘土来源的证据[J]. 中国科学D辑, 2004, 34(6):552-561. |
LIU J H, SHI X F, CHEN L R, et al. REEs and εNd of clay components in sediments of the East Pacific Ocean: Evidence from clay sources[J]. Science in China Series D: Earth Sciences, 2004, 34(6): 552-561. | |
[54] | 刘志飞, 李夏晶. 南海沉积物中蒙脱石的成因探讨[J]. 第四纪研究, 2011, 31(2):199-206. |
LIU Z F, LI X J. Discussion on smectite formation in South China Sea sediments[J]. Quaternary Sciences, 2011, 31(2): 199-206. | |
[55] | 金性春. 大洋钻探与西太平洋构造[J]. 地球科学进展, 1995, 10(3):234-239. |
JIN X C. Ocean drilling program and tectonics of the western Pacific region[J]. Advance in Earth Sciences, 1995, 10(3): 234-239. | |
[56] |
MING J, LI A C, HUANG J, et al. Assemblage characteristics of clay minerals and its implications to evolution of eolian dust input to the Parece Vela Basin since 1.95 Ma[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(1): 174-186.
DOI URL |
[57] | LISIECKI L E, RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):1003-1020. |
[58] | SUN Y B, AN Z S. Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau[J]. Journal of Geophysical Research, 2005, 110(D23): D23101. |
[59] |
REA D K, SNOECKX H, JOSEPH L H. Late Cenozoiceolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13(3): 215-224.
DOI URL |
[60] | 万世明, 徐兆凯. 西太平洋风尘沉积记录研究进展[J]. 海洋与湖沼, 2017, 48(6):1208-1219. |
WAN S M, XU Z K. Research progress on eolian dust records in the West Pacific[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1208-1219. | |
[61] | ZHONG Y, SHI X F, YANG H, et al. Humidification of Central Asia and equatorward shifts of westerly winds since the late Pliocene[J]. Communications Earth & Environment, 2022, 3(1): 1-9. |
[62] |
NIE J S, PULLEN A, GARZIONE C N, et al. Pre-Quaternary decoupling between Asian aridification and high dust accumulation rates[J]. Science Advances, 2018, 4(2): eaao6977.
DOI URL |
[63] |
ZHANG Q, LIU Q S, ROBERTS A P, et al. Mechanism for enhanced eolian dust flux recorded in North Pacific Ocean sediments since 4.0 Ma: Aridity or humidity at dust source areas in the Asianinterior?[J]. Geology, 2020, 48(1): 77-81.
DOI URL |
[1] | 祝飞扬, 李怀明, 姚鹏飞, 王潇, 朱继浩, 吕士辉, 罗祎, 周丽娜, 刘禹维, 唐煜童. 两相淋滤实验在深海铁锰结核研究中的应用[J]. 海洋学研究, 2023, 41(2): 83-93. |
[2] | 李月, 许冬, 张志毅, 蒋科迪, 刘庚. 西太平洋E20岩芯末次冰期以来的沉积特征与环境意义[J]. 海洋学研究, 2021, 39(2): 12-20. |
[3] | 王苑如, 崔鸿鹏, 李继东, 孙栋, 王春生, 杨娟. 西太平洋多金属结核区表层沉积物细菌群落结构及其对沉积扰动的响应[J]. 海洋学研究, 2021, 39(2): 21-32. |
[4] | 张志毅, 许冬, 韩喜彬, 王雁冰, 胡智龙, 葛倩, 阳凡林. 雅浦-马里亚纳海沟附近海域的精细地貌特征研究[J]. 海洋学研究, 2020, 38(1): 27-41. |
[5] | 孟凡盛, 倪建宇, 姚旭莹. 西太平洋马尔库斯-威克海山区沉积物中生物硅含量分布[J]. 海洋学研究, 2019, 37(4): 60-67. |
[6] | 马志康, 付东洋, 屈科, 朱凤芹. 台风“天秤”对两种深海声道下声传播的影响[J]. 海洋学研究, 2019, 37(3): 40-48. |
[7] | 刘大为, 张可欣, 裴艳东, 王永明, 胡克, 赵雪. 渤海湾西岸QG01钻孔沉积物黏土矿物分布及古气候替代指标研究[J]. 海洋学研究, 2018, 36(3): 28-36. |
[8] | 俞小勇, 徐杰, 龙爱民, 钟宛宣. 夏季珠江口及近岸海域悬浮颗粒物生物硅分析[J]. 海洋学研究, 2018, 36(3): 67-75. |
[9] | 付锋, 郑洋, 姚旭莹, 倪建宇. 东太平洋CC区西区表层沉积物黏土矿物和地球化学特征[J]. 海洋学研究, 2017, 35(1): 55-65. |
[10] | 董航, 姜良红, 章向明, 周磊. 台风威马逊入侵南海的路径分析[J]. 海洋学研究, 2016, 34(1): 1-7. |
[11] | 舒雨婷, 郑玉龙, 许冬, 初凤友. 西菲律宾海盆I8孔黏土矿物的物源分析[J]. 海洋学研究, 2015, 33(4): 61-69. |
[12] | 高正来, 杨丹, 张海生, 潘建明, 倪建宇. 西太平洋WP02-1柱状样品有机地球化学特征及其与Fe、Mn成岩成矿作用[J]. 海洋学研究, 2013, 31(2): 65-71. |
[13] | 左涛, 陈锦年, 王实娜. 西太平洋暖池区域热通量变化及其与南海夏季风爆发的关系[J]. 海洋学研究, 2012, 30(2): 5-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||