研究论文

基于Argo实测流场数据对5套海洋模式产品中赤道太平洋中层流的评估

  • 周永远 ,
  • 闫运伟 ,
  • 邢小罡 ,
  • 柴扉
展开
  • 1.卫星海洋环境动力学国家重点实验室,浙江 杭州 310012;
    2.自然资源部 第二海洋研究所,浙江 杭州 310012;
    3.美国缅因大学 海洋科学学院,缅因州 欧洛诺市 04469
周永远(1995-),男,河南省邓州市人,主要从事赤道太平洋深层环流研究。E-mail:oceanzyy@163.com

收稿日期: 2020-03-17

  网络出版日期: 2020-09-15

基金资助

国家重点研发计划(2016YFC1401601);国家自然科学基金(41730536);自然资源部第二海洋研究所中央级公益性科研院所基本科研业务费专项资金(14283)

Assessment of the Pacific Equatorial Intermediate Currents in five ocean models outputs based on the observation calculated from Argo trajectories

  • ZHOU Yongyuan ,
  • YAN Yunwei ,
  • XING Xiaogang ,
  • CHAI Fei
Expand
  • 1. State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou 310012, China;
    2. Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;
    3. School of Marine Sciences, University of Maine, Orono 04669, USA

Received date: 2020-03-17

  Online published: 2020-09-15

摘要

本文以Argo轨迹资料计算的赤道太平洋中层流(1 000 m深度流场)作为实测数据,从空间结构特征和时间变化特征两方面对5套常用海洋模式产品(OFES、LICOM、HYCOM、ECCO2和SODA)进行了评估。Argo流场显示赤道太平洋中层流呈条带状结构,且存在明显的西强东弱和南强北弱特征。此外,赤道太平洋中层流存在明显的季节变化且其相位关于赤道对称。5套模式产品的评估结果表明,SODA流场与实测流场最接近,其时空变化特征都与实测流场基本一致;其次是ECCO2流场,除流场动能偏小以外,其他各方面都与实测流场一致;OFES、LICOM和HYCOM流场的模拟效果较差,但都能再现条带状结构特征。

本文引用格式

周永远 , 闫运伟 , 邢小罡 , 柴扉 . 基于Argo实测流场数据对5套海洋模式产品中赤道太平洋中层流的评估[J]. 海洋学研究, 2020 , 38(3) : 1 -9 . DOI: 10.3969/j.issn.1001-909X.2020.03.001

Abstract

A preliminary assessment of the Pacific Equatorial Intermediate Currents (EICs) in five ocean models outputs (OFES, LICOM, HYCOM, ECCO2 and SODA) were conducted according to the spatial and temporal features using observation data which was calculated from Argo trajectories. The EICs in Argo currents field are mainly composed of the alternating east-west zonal jets. In the east-west direction, the currents are strong in the western but weak in the eastern, in the south-north direction, the currents are strong in the southern but weak in the northern. Besides, there are seasonal variations and the phase of seasonal variations is characterized by westward propagation and meridionally symmetrical on the equator. The assessment results show that SODA is the best dataset in these five models, all the characteristics are almost consistent with the observation. The second is ECCO2, the flow field is almost consistent with the observation except the kinetic energy. Then comes the OFES, LICOM and HYCOM, all of them are able to simulate the structures of the alternating zonal jets.

参考文献

[1] TOURRE Y M, WHITE W B. ENSO signals in global upper-ocean temperature[J]. Journal of Physical Oceanography, 1995, 25(6): 1317-1332.
[2] ASHOK K, YAMAGATA T. Climate change: The El Niño with a difference[J]. Nature, 2009, 461(7263): 481-484.
[3] ALEXANDER M A, BLADÉ I, NEWMAN M, et al. The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans[J]. Journal of Climate, 2002, 15(16): 2205-2231.
[4] TOOLE J M, ZOU E, MILLARD R C. On the circulation of the upper waters in the western equatorial Pacific Ocean[J]. Deep-Sea Research, Part A, 1988, 35(9): 1451-1482.
[5] HSU A C, XUE H, CHAI F, et al. Variability of the Pacific North Equatorial Current and its implications on Japanese eel (Anguilla japonica) larval migration[J]. Fisheries Oceanography, 2017, 26(3): 251-267.
[6] MARIN F, KESTENARE E, DELCROIX T, et al. Annual reversal of the equatorial intermediate current in the Pacific: observations and model diagnostics[J]. Journal of Physical Oceanography, 2010, 40(5): 915-933.
[7] DIETZE H, LOEPTIEN U. Revisiting “nutrient trapping” in global coupled biogeochemical ocean circulation models[J]. Global Biogeochemical Cycles, 2013, 27(2): 265-284.
[8] DUCET N, TRAON P Y L, REVERDIN G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2[J]. Journal of Geophysical Research, 2000, 105(C8): 19477-19498.
[9] MCPHADEN M J, BUSALACCHI A J, CHENEY R, et al. The tropical ocean-global atmosphere observing system: a decade of progress[J]. Journal of Geophysical Research, 1998, 103(C7): 14169-14240.
[10] LAGERLOEF G S E, MITCHUM G T, LUKAS R B, et al. Tropical Pacific near surface current estimated from altimeter, wind, and drifter data[J]. Journal of Geophysical Research: Oceans, 1999, 104(C10): 23313-23326.
[11] SUDRE J, MORROW R A. Global surface current: a high-resolution product for investigating ocean dynamics[J]. Ocean Dynamics, 2008, 58(2): 101-118.
[12] DONGUY J R, MEYERS G. Mean annual variation of transport of major currents in the tropical Pacific Ocean[J]. Deep Sea Research Part I, 1996, 43(7): 1105-1122.
[13] JOHNSON G C, KUNZE E, MCTAGGART K E, et al. Temporal and spatial structure of the equatorial deep jets in the Pacific Ocean[J]. Journal of Physical Oceanography, 2002, 32(12): 3396-3407.
[14] FIRING E. Deep zonal currents in the central equatorial Pacific[J]. Journal of Marine Research, 1987, 45(4): 791-812.
[15] JOHNSON G C, SLOYAN B M, KESSLER W S, et al. Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s[J]. Progress in Oceanography, 2002, 52(1): 31-61.
[16] MASUMOTO Y, SASAKI H, KAGIMOTO T, et al. A fifty-year eddy-resolving simulation of the world ocean-preliminary outcomes of OFES (OGCM for the Earth Simulator) [J]. Journal of Earth Simulator, 2004, 4(1): 35-56.
[17] LIU Hailong, LIN Pengfei, YU Yongqiang, et al. The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2[J]. Acta Meteor Sinica, 2012, 26(3): 318-329.
[18] ERIC C, HARLEY H, JOSEPH M E, et al. US GODAE: global ocean prediction with the HYbrid Coordinate Ocean Model[J]. Oceanography, 2009, 22(2): 64-75.
[19] MENEMENLIS D, CAMPIN J M, HEIMBACH P, et al. ECCO2: high resolution global ocean and sea ice data synthesis[C]. AGU Fall Meeting, 2008.
[20] CARTON J A, GIESE B S. A reanalysis of ocean climate using Simple Ocean Data Assimilation[J]. Monthly Weather Review, 2008, 136(8): 2999-3017.
[21] 许建平.阿尔戈全球海洋观测大探秘[M].北京:海洋出版社,2002.
XU Jianping. Exploring of the Argo global oceanic observation system[M]. Beijing: China Ocean Press, 2002.
[22] 谢基平.利用ARGO浮标提取中层海流信息研究[D].南京:南京信息工程大学,2005.
XIE Jiping. A study on the acquirability of mid-depth current information by the Argo float[D]. Nanjing: Nanjing University of Information, 2005.
[23] PARK J J, KIM K, CRAWFORD W R. Inertial currents estimated from surface trajectories of ARGO floats[J]. Geophysical Research Letters, 2004, 31(13): 137-151.
[24] PARK J J, KIM K, KING B A, et al. An advanced method to estimate deep currents from profiling floats[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(8): 1294-1304.
[25] LEBEDEV K V, YOSHINARI H, MAXIMENKO N A, et al. Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface[J]. IPRC Technical Note, 2007, 4(2): 1-16.
[26] XIE Jiping, ZHU Jiang. Estimation of the surface and mid-depth currents from Argo floats in the Pacific and error analysis[J]. Journal of Marine Systems, 2008, 73(1-2): 61-75.
[27] OLLITRAULT M, RANNOU J P. ANDRO: an Argo-based deep displacement dataset[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(4): 759-788.
[28] CRAVATTE S, KESSLER W S, MARIN F. Intermediate zonal jets in the tropical Pacific Ocean observed by Argo float[J]. Journal of Physical Oceanography, 2012, 42(9): 1475-1485.
[29] 马强,汪嘉宁,王凡.六套海洋模式模拟热带西太平洋深层环流结果的对比分析[J].海洋与湖沼,2017,48(6): 1302-1317.
MA Qiang, WANG Jianing, WANG Fan. Deep-layer circulation in tropical western pacific ocean based on six ocean models outputs[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1302-1317.
[30] 夏一凡,杜岩,王天宇,等.基于Argo轨迹资料反演热带太平洋中层流场条带状结构特征[J].热带海洋学报,2017,36(4): 1-9.
XIA Yifan, DU Yan, WANG Tianyu, et al. Mid-depth zonal jets and their characteristics in the tropical Pacific Ocean derived from Argo trajectory[J]. Journal of Tropical Oceanography, 2017, 36(4): 1-9.
[31] LARGE W G, MCWILLIAMS J C, DONEY S C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization[J]. Reviews of Geophysics, 1994, 32(4): 363.
[32] CANUTO V M, HOWARD A, CHENG Y, et al. Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities[J]. Journal of Physical Oceanography, 2001, 31(6): 1413-1426.
[33] PERSSON A. The story of the Hovmöller diagram: An (almost) eyewitness account[J]. Bulletin of the American Meteorological Society, 2017, 98(5): 949-957.
[34] LUKAS R, FIRING E. The annual Rossby wave in the central equatorial Pacific Ocean[J]. Journal of Physical Oceanography, 1985, 15(1): 55-67.
文章导航

/