湿地植被的生物量是湿地生态评价、保护和利用的重要基础数据,遥感技术已经成为湿地生物量高效、准确监测的重要手段。基于2013年9月的HJ-1 高光谱遥感影像,应用准同步现场踏勘数据,通过单变量线性回归和多变量线性回归的方法,针对7种常用的窄波段植被指数和2种红边指数对黄河口芦苇和碱蓬生物量(地上干重)的估测能力进行了评价。结果表明:(1)单光谱指数变量情况下,对于芦苇,选择近红外827 nm波段和红635 nm波段简单植被指数(SRI)和线性插值红边指数(REP_ linear interpolation)取得了最佳的单变量回归结果,决定系数分别达到0.42和0.58;对于碱蓬,选择近红外807 nm波段和红692 nm波段的归一化差值植被指数(NDVI)、SRI和优化的土壤校正植被指数(OSAVI)取得了较好的回归结果,决定系数分别达到0.60,0.59和0.47;(2)多光谱指数变量情况下,以在单变量回归分析中取得较好结果的SRI和REP_ linear interpolation指数为变量,芦苇得到了与其生物量之间决定系数为0.71的高相关性;同时,以NDVI、SRI和OSAVI为变量,与碱蓬生物量的决定系数达到了0.66。
[1] RICHARDSON A, WIEGAND C, ARKIN G, et al. Remotely-sensed spectral indicators of sorghum development and their use in growth modeling[J]. Agricultural Meteorology,1982,26(1):11-23.
[2] EVERITT J, ESCOBAR D, RICHARDSON A. Estimating grassland phytomass production with near-infrared and mid-infrared spectral variables[J]. Remote Sensing of Environment,1989,30(3):257-261.
[3] ANDERSON G, HANSON J, HAAS R. Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands[J]. Remote Sensing of Environment,1993,45(2):165-175.
[4] WYLIE B, MEYER D, TIESZEN L, et al. Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands: A case study[J]. Remote Sensing of Environment,2002,79(2):266-78.
[5] LU Deng-sheng. The potential and challenge of remote sensing-based biomass estimation[J]. International Journal of Remote Sensing,2006,27(7):1 297-1 328.
[6] CHO M, SKIDMORE A. Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy[J]. International Journal of Remote Sensing,2009,30(2):499-515.
[7] ROUSE J. Monitoring the vernal advancement and retrogradation(greenwave effect) of natural vegetation[R]//NASA/GSFC Type III Final Report. Greenbelt, MD,1974:371-373.
[8] TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment,1979,8(2):127-150.
[9] WANG Hong, LI Xiao-bing, YU Hong-jing. Monitoring growing season of typical steppe in northern China based on NOAA/AVHRR NDVI data[J]. Acta Phytoecologica Sinica,2006,30(3): 356-374.
王宏,李晓兵,余弘婧.基于NOAA/AVHRR NDVI监测中国北方典型草原的生长季及变化[J].植物生态学报,2006,30(3):365-374.
[10] TAO Wei-guo, XU Bin, LIU Li-jun, et al. Yield estimation model for different utilization status grassland based on remote sensing data[J]. Chinese Journal of Ecology,2007,26(3):332-337.
陶伟国,徐斌,刘丽军,等.不同利用状况下草原遥感估产模型[J].生态学杂志,2007,26(3):332-337.
[11] KLEMAS V. Remote sensing of coastal wetland biomass: An overview [J]. Journal of Coastal Research,2013,29(5):1 016-1 028.
[12] HUETE A, JACKSON R. Soil and atmosphere influences on the spectra of partial canopies [J]. Remote Sensing of Environment,1988,25(1):89-105.
[13] KAUFMAN Y J, TANRE D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS [J]. Geoscience and Remote Sensing, IEEE Transactions on,1992,30(2):261-270.
[14] QI Jia-guo, CABOT F, MORAN M, et al. Biophysical parameter estimations using multidirectional spectral measurements[J]. Remote Sensing of Environment,1995,54(1):71-83.
[15] TODD S, HOFFER R, MILCHUNAS D. Biomass estimation on grazed and ungrazed rangelands using spectral indices[J]. International Journal of Remote Sensing,1998,19(3):427-438.
[16] MYNENI R B, HALL F G, SELLERS P J, et al. The interpretation of spectral vegetation indexes[J]. Geoscience and Remote Sensing, IEEE Transactions on,1995,33(2):481-486.
[17] SELLERS P. Canopy reflectance, photosynthesis and transpiration[J]. International Journal of Remote Sensing,1985,6(8):1 335-1 372.
[18] GAO Xiang, HUETE A R, NI Wen-ge, et al. Optical-biophysical relationships of vegetation spectra without background contamination[J]. Remote Sensing of Environment,2000,74(3):609-620.
[19] BLACKBURN G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches[J]. Remote Sensing of Environment,1998,66(3):273-285.
[20] THENKABAIL P S, SMITH R B, DE PAUW E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics[J]. Remote Sensing of Environment,2000,71(2):158-182.
[21] GILABERT M A, GANDÍA S, MELIA J. Analyses of spectral-biophysical relationships for a corn canopy [J]. Remote Sensing of Environment,1996,55(1):11-20.
[22] MUTANGA O, SKIDMORE A K. Narrow band vegetation indices overcome the saturation problem in biomass estimation[J]. International Journal of Remote Sensing,2004,25(19):3 999-4 014.
[23] ADAM E, MUTANGA O, RUGEGE D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review[J]. Wetlands Ecology and Management,2010,18(3):281-296.
[24] WANG Ye-qiao. Remote sensing of coastal environment[M]. London: CRC Press,2010:261-280.
[25] PENGRA B W, JOHNSTON C A, LOVELAND T R. Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor[J]. Remote Sensing of Environment,2007,108(1):74-81.
[26] ROSSO P, USTIN S, HASTINGS A. Mapping marshland vegetation of San Francisco Bay, California, using hyperspectral data[J]. International Journal of Remote Sensing,2005,26(23):5 169-5 191.
[27] WANG Ye-qiao. Remote sensing of coastal environment[M]. London: CRC Press,2010:61-78.
[28] USTIN S L, ROBERTS D A, GAMON J A, et al. Using imaging spectroscopy to study ecosystem processes and properties[J]. BioScience,2004,54(6):523-534.
[29] HIRANO A, MADDEN M, WELCH R. Hyperspectral image data for mapping wetland vegetation[J]. Wetlands,2003,23(2):436-448.
[30] COHEN W B. Response of vegetation indices to changes in three measures of leaf water stress [J]. Photogrammetric Engineering & Remote Sensing,1991,57(2):195-202.
[31] GUPTA R, VIJAYAN D, PRASAD T. New hyperspectral vegetation characterization parameters[J]. Advances in Space Research,2001,28(1):201-206.
[32] BROGE N H, LEBLANC E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment,2001,76(2):156-172.
[33] KIM M S, DAUGHTRY C, CHAPPELLE E, et al. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation[C]//Proc. ISPRS'94, Val d'Isere, France,1994:299-306.
[34] DAUGHTRY C, WALTHALL C, KIM M, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment,2000,74(2):229-239.
[35] DAWSON T, CURRAN P. Technical note A new technique for interpolating the reflectance red edge position[J]. International Journal of Remote Sensing,1998,19(11):2 133-2 139.
[36] CURRAN P J. Imaging spectrometry[J]. Progress in Physical Geography,1994,18(2):247-266.
[37] GOBRON N, PINTY B, VERSTRAETE M M. Theoretical limits to the estimation of the leaf area index on the basis of visible and near-infrared remote sensing data[J]. Geoscience and Remote Sensing, IEEE Transactions on,1997,35(6): 1 438-1 445.