Journal of Marine Sciences ›› 2025, Vol. 43 ›› Issue (1): 57-68.DOI: 10.3969/j.issn.1001-909X.2025.01.006
Previous Articles Next Articles
HOU Zonghao(), ZHANG Yifei*(
), FANG Xin, DUAN Yixin
Received:
2024-02-28
Revised:
2024-05-28
Online:
2025-03-15
Published:
2025-05-30
Contact:
ZHANG Yifei
CLC Number:
HOU Zonghao, ZHANG Yifei, FANG Xin, DUAN Yixin. Evaluation of ecological restoration effect in the surrounding sea area of artificial island based on Bayesian network[J]. Journal of Marine Sciences, 2025, 43(1): 57-68.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2025.01.006
目标层 | 准则层 | 要素层 | 指标层 | 正负性 |
---|---|---|---|---|
海域生态环境质量A | 压力P | 水环境压力B1 | COD/(mg·L-1) P1 | - |
PO4-P/(mg·L-1) P2 | - | |||
无机氮/(mg·L-1) P3 | - | |||
DO/(mg·L-1) P4 | + | |||
石油类/(mg·L-1) P5 | - | |||
沉积物环境压力B2 | 硫化物/(×10-6) P6 | - | ||
铜/(×10-6) P7 | - | |||
锌/(×10-6) P8 | - | |||
总汞/(×10-6) P9 | - | |||
镉/(×10-6) P10 | - | |||
状态S | 生物状况B3 | 浮游动物丰度/(ind·m-3) S1 | + | |
浮游植物细胞丰度/(×104个·m-3) S2 | + | |||
仔稚鱼密度/(尾·m-3) S3 | + | |||
底栖生物栖息密度/(ind·m-2) S4 | + | |||
响应R | 生物响应B4 | 浮游动物多样性指数 R1 | + | |
浮游植物多样性指数 R2 | + | |||
底栖生物多样性指数 R3 | + | |||
初级生产力/(mg·m-2·d-1) R4 | + |
Tab.1 Evaluation index system of ecological restoration effect in the sea area around Riyue Island
目标层 | 准则层 | 要素层 | 指标层 | 正负性 |
---|---|---|---|---|
海域生态环境质量A | 压力P | 水环境压力B1 | COD/(mg·L-1) P1 | - |
PO4-P/(mg·L-1) P2 | - | |||
无机氮/(mg·L-1) P3 | - | |||
DO/(mg·L-1) P4 | + | |||
石油类/(mg·L-1) P5 | - | |||
沉积物环境压力B2 | 硫化物/(×10-6) P6 | - | ||
铜/(×10-6) P7 | - | |||
锌/(×10-6) P8 | - | |||
总汞/(×10-6) P9 | - | |||
镉/(×10-6) P10 | - | |||
状态S | 生物状况B3 | 浮游动物丰度/(ind·m-3) S1 | + | |
浮游植物细胞丰度/(×104个·m-3) S2 | + | |||
仔稚鱼密度/(尾·m-3) S3 | + | |||
底栖生物栖息密度/(ind·m-2) S4 | + | |||
响应R | 生物响应B4 | 浮游动物多样性指数 R1 | + | |
浮游植物多样性指数 R2 | + | |||
底栖生物多样性指数 R3 | + | |||
初级生产力/(mg·m-2·d-1) R4 | + |
要素层 | 指标 | 2016年4月 | 2019年5月 | 要素层 | 指标 | 2016年4月 | 2019年5月 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 方差 | 平均值 | 方差 | 平均值 | 方差 | 平均值 | 方差 | ||||||
B1 | P1 | 0.243 4 | 0.009 8 | 0.859 8 | 0.000 6 | B3 | S1 | 0.356 3 | 0.014 5 | 0.014 3 | 0.000 0 | ||
P2 | 0.287 7 | 0.006 9 | 0.752 2 | 0.009 6 | S2 | 0.430 2 | 0.022 0 | 0.377 7 | 0.067 6 | ||||
P3 | 0.578 4 | 0.014 1 | 0.900 5 | 0.002 2 | S3 | 0.272 1 | 0.018 8 | 0.293 1 | 0.073 5 | ||||
P4 | 0.488 1 | 0.013 4 | 0.648 8 | 0.003 8 | S4 | 0.429 5 | 0.011 9 | 0.386 6 | 0.011 9 | ||||
P5 | 0.521 2 | 0.008 9 | 0.861 0 | 0.002 0 | B4 | R1 | 0.365 9 | 0.013 6 | 0.905 3 | 0.000 5 | |||
B2 | P6 | 0.440 8 | 0.021 4 | 0.810 3 | 0.007 5 | R2 | 0.759 9 | 0.003 4 | 0.462 1 | 0.040 3 | |||
P7 | 0.403 6 | 0.013 7 | 0.451 9 | 0.056 1 | R3 | 0.689 0 | 0.011 3 | 0.213 9 | 0.016 0 | ||||
P8 | 0.298 2 | 0.007 9 | 0.646 6 | 0.022 0 | R4 | 0.166 4 | 0.001 0 | 0.575 2 | 0.013 4 | ||||
P9 | 0.694 8 | 0.008 0 | 0.628 8 | 0.001 2 | |||||||||
P10 | 0.446 4 | 0.002 5 | 0.619 6 | 0.008 0 |
Tab.2 The average and variance of each index after normalization
要素层 | 指标 | 2016年4月 | 2019年5月 | 要素层 | 指标 | 2016年4月 | 2019年5月 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 方差 | 平均值 | 方差 | 平均值 | 方差 | 平均值 | 方差 | ||||||
B1 | P1 | 0.243 4 | 0.009 8 | 0.859 8 | 0.000 6 | B3 | S1 | 0.356 3 | 0.014 5 | 0.014 3 | 0.000 0 | ||
P2 | 0.287 7 | 0.006 9 | 0.752 2 | 0.009 6 | S2 | 0.430 2 | 0.022 0 | 0.377 7 | 0.067 6 | ||||
P3 | 0.578 4 | 0.014 1 | 0.900 5 | 0.002 2 | S3 | 0.272 1 | 0.018 8 | 0.293 1 | 0.073 5 | ||||
P4 | 0.488 1 | 0.013 4 | 0.648 8 | 0.003 8 | S4 | 0.429 5 | 0.011 9 | 0.386 6 | 0.011 9 | ||||
P5 | 0.521 2 | 0.008 9 | 0.861 0 | 0.002 0 | B4 | R1 | 0.365 9 | 0.013 6 | 0.905 3 | 0.000 5 | |||
B2 | P6 | 0.440 8 | 0.021 4 | 0.810 3 | 0.007 5 | R2 | 0.759 9 | 0.003 4 | 0.462 1 | 0.040 3 | |||
P7 | 0.403 6 | 0.013 7 | 0.451 9 | 0.056 1 | R3 | 0.689 0 | 0.011 3 | 0.213 9 | 0.016 0 | ||||
P8 | 0.298 2 | 0.007 9 | 0.646 6 | 0.022 0 | R4 | 0.166 4 | 0.001 0 | 0.575 2 | 0.013 4 | ||||
P9 | 0.694 8 | 0.008 0 | 0.628 8 | 0.001 2 | |||||||||
P10 | 0.446 4 | 0.002 5 | 0.619 6 | 0.008 0 |
要素层 | 指标层 | 权重 | 要素层 | 指标层 | 权重 |
---|---|---|---|---|---|
B1 | P1 | 0.254 8 | B3 | S1 | 0.178 8 |
P2 | 0.192 6 | S2 | 0.218 8 | ||
P3 | 0.192 6 | S3 | 0.242 8 | ||
P4 | 0.278 9 | S4 | 0.359 7 | ||
P5 | 0.081 2 | B4 | R1 | 0.175 2 | |
B2 | P6 | 0.315 1 | R2 | 0.267 9 | |
P7 | 0.232 8 | R3 | 0.296 4 | ||
P8 | 0.163 8 | R4 | 0.260 5 | ||
P9 | 0.157 7 | ||||
P10 | 0.130 6 |
Tab.3 Weights of the indexes in each element layer
要素层 | 指标层 | 权重 | 要素层 | 指标层 | 权重 |
---|---|---|---|---|---|
B1 | P1 | 0.254 8 | B3 | S1 | 0.178 8 |
P2 | 0.192 6 | S2 | 0.218 8 | ||
P3 | 0.192 6 | S3 | 0.242 8 | ||
P4 | 0.278 9 | S4 | 0.359 7 | ||
P5 | 0.081 2 | B4 | R1 | 0.175 2 | |
B2 | P6 | 0.315 1 | R2 | 0.267 9 | |
P7 | 0.232 8 | R3 | 0.296 4 | ||
P8 | 0.163 8 | R4 | 0.260 5 | ||
P9 | 0.157 7 | ||||
P10 | 0.130 6 |
功能区 | 要素层 | 权重 |
---|---|---|
旅游休闲娱乐区 | B1 | 0.302 4 |
B2 | 0.215 7 | |
B3 | 0.240 9 | |
B4 | 0.240 9 | |
农渔业区 | B1 | 0.154 2 |
B2 | 0.185 8 | |
B3 | 0.330 0 | |
B4 | 0.330 0 | |
保留区 | B1 | 0.255 6 |
B2 | 0.259 6 | |
B3 | 0.259 1 | |
B4 | 0.225 7 |
Tab.4 Weights of the elements in each functional zone
功能区 | 要素层 | 权重 |
---|---|---|
旅游休闲娱乐区 | B1 | 0.302 4 |
B2 | 0.215 7 | |
B3 | 0.240 9 | |
B4 | 0.240 9 | |
农渔业区 | B1 | 0.154 2 |
B2 | 0.185 8 | |
B3 | 0.330 0 | |
B4 | 0.330 0 | |
保留区 | B1 | 0.255 6 |
B2 | 0.259 6 | |
B3 | 0.259 1 | |
B4 | 0.225 7 |
Fig.5 Results of sensitivity analysis of ecological restoration effect evaluation indexes in the sea area around Riyue Island [p(A=very high) represents the marginal probability of the ecological environment quality being at a very high level, indicated by the black vertical line in the figure. The horizontal bars show the range of probability fluctuations.]
[1] | 肖哲宇, 戚洪帅, 蔡锋, 等. 人工岛建设对海口湾沉积特征与泥沙运移的影响[J]. 海洋学报, 2022, 44(3):137-146. |
XIAO Z Y, QI H S, CAI F, et al. The impact of artificial island construction on sedimentary characteristics and sediment transport in the Haikou Bay[J]. Haiyang Xuebao, 2022, 44(3): 137-146. | |
[2] | AFZAL M S, TAHIR F, AL-GHAMDI S G. Recommendations and strategies to mitigate environmental implications of artificial island developments in the gulf[J]. Sustainability, 2022, 14(9): 5027. |
[3] | CHEE S Y, OTHMAN A G, SIM Y K, et al. Land reclamation and artificial islands: Walking the tightrope between development and conservation[J]. Global Ecology and Conservation, 2017, 12: 80-95. |
[4] |
MARTIN D M. Ecological restoration should be redefined for the twenty-first century[J]. Restoration Ecology, 2017, 25(5): 668-673.
DOI PMID |
[5] | WANG J W, LIU Y P, LIU M Y, et al. Multi-phase environmental impact assessment of marine ecological restoration project based on DPSIR-cloud model[J]. International Journal of Environmental Research and Public Health, 2022, 19(20): 13295. |
[6] | BASCONI L, CADIER C, GUERRERO L G. Challenges in marine restoration ecology: How techniques, assessment metrics, and ecosystem valuation can lead to improved restoration success[M]//YOUMARES 9—The oceans: Our research, our future. Cham: Springer International Publishing, 2019: 83-99. |
[7] | 符小明, 唐建业, 吴卫强, 等. 海州湾生态修复效果评价[J]. 大连海洋大学学报, 2017, 32(1):93-98. |
FU X M, TANG J Y, WU W Q, et al. Evaluation of ecological restoration performance in Haizhou Bay, Lianyungang[J]. Journal of Dalian Ocean University, 2017, 32(1): 93-98. | |
[8] | 杨金艳, 罗福生, 王爱军, 等. 淤积型海湾整治修复效果综合评价:以厦门湾为例[J]. 应用海洋学学报, 2020, 39(3):389-399. |
YANG J Y, LUO F S, WANG A J, et al. Comprehensive evaluation for silted bay restoration: A case study in Xiamen Bay[J]. Journal of Applied Oceanography, 2020, 39(3): 389-399. | |
[9] | 张秋丰, 白洁, 马玉艳, 等. 天津海岸带生态修复效果评估方法研究[J]. 海洋环境科学, 2019, 38(5):782-789,795. |
ZHANG Q F, BAI J, MA Y Y, et al. Research on the method for evaluating ecological restoration effect in the coastal zone of Tianjin[J]. Marine Environmental Science, 2019, 38(5): 782-789, 795. | |
[10] | 于小芹, 马云瑞, 余静. 基于熵权TOPSIS模型的山东省海岸带生态修复政策效果评价研究[J]. 海洋环境科学, 2022, 41(1):74-79. |
YU X Q, MA Y R, YU J. Evaluation of coastal ecological restoration policy effect based on entropy-weight TOPSIS Model in Shandong province[J]. Marine Environmental Science, 2022, 41(1): 74-79. | |
[11] | 吴逸凡, 张亦飞, 方欣, 等. 基于Choquet模糊积分的人工鱼礁生态修复效果综合评价[J]. 海洋环境科学, 2022, 41(3):467-473. |
WU Y F, ZHANG Y F, FANG X, et al. Ecological restoration effect evaluation of artificial reefs with Choquet integral algorithom[J]. Marine Environmental Science, 2022, 41(3): 467-473. | |
[12] | ANDRICEVIC R. Ecological quality assessment under uncertainty for transitional and coastal waters: Central Eastern Adriatic Sea study[J]. Ecological Indicators, 2022, 138: 108850. |
[13] | XU L F, LIU D D. Evaluation of the effect and investment benefit of marine ecosystem protection and restoration[J]. Frontiers in Ecology and Evolution, 2022, 10: 991198. |
[14] | NIEMEIJER D, DE GROOT R S. A conceptual framework for selecting environmental indicator sets[J]. Ecological Indicators, 2008, 8(1): 14-25. |
[15] | 朱明敏. 贝叶斯网络结构学习与推理研究[D]. 西安: 西安电子科技大学, 2013. |
ZHU M M. Research on Bayesian network structure learning and reasoning[D]. Xi’an: Xidian University, 2013. | |
[16] | MARCOT B G, PENMAN T D. Advances in Bayesian network modelling: Integration of modelling technologies[J]. Environmental Modelling & Software, 2019, 111: 386-393. |
[17] |
HUGHEY K F D, CULLEN R, KERR G N, et al. Application of the pressure-state-response framework to perceptions reporting of the state of the New Zealand environment[J]. Journal of Environmental Management, 2004, 70(1): 85-93.
PMID |
[18] |
WOLFSLEHNER B, VACIK H. Evaluating sustainable forest management strategies with the analytic network process in a pressure-state-response framework[J]. Journal of Environmental Management, 2008, 88(1): 1-10.
PMID |
[19] | 何彦龙, 袁一鸣, 王腾, 等. 基于GIS的长江口海域生态系统脆弱性综合评价[J]. 生态学报, 2019, 39(11):3918-3925. |
HE Y L, YUAN Y M, WANG T, et al. Integrated assessment of marine ecological vulnerability in the Yangtze River Estuary using GIS[J]. Acta Ecologica Sinica, 2019, 39(11): 3918-3925. | |
[20] | FENTON N, NEIL M. Risk assessment and decision analysis with Bayesian networks[M]. Florida: CRC Press, 2018: 113-265. |
[21] | REZAEI J. Best-worst multi-criteria decision-making method[J]. Omega, 2015, 53:49-57. |
[22] | LIU P D, ZHU B Y, WANG P. A weighting model based on best-worst method and its application for environmental performance evaluation[J]. Applied Soft Computing, 2021, 103: 107168. |
[23] | SAFARZADEH S, KHANSEFID S, RASTI B M. A group multi-criteria decision-making based on best-worst method[J]. Computers & Industrial Engineering, 2018, 126: 111-121. |
[24] | LIANG F Q, BRUNELLI M, REZAEI J. Consistency issues in the best worst method: Measurements and thresholds[J]. Omega, 2020, 96: 102175. |
[25] | GUO K, ZHANG X C, KUAI X, et al. A spatial Bayesian-network approach as a decision-making tool for ecological-risk prevention in land ecosystems[J]. Ecological Modelling, 2020, 419: 108929. |
[26] | KAIKKONEN L, PARVIAINEN T, RAHIKAINEN M, et al. Bayesian networks in environmental risk assessment: A review[J]. Integrated Environmental Assessment and Management, 2021, 17(1): 62-78. |
[27] | 杨湘艳, 余静. 基于贝叶斯网络的海洋生态环境状况评价:以山东省为例[J]. 海洋通报, 2021, 40(4):473-480. |
YANG X Y, YU J. Assessment of marine ecological environment based on Bayesian networks: A case study of Shandong Province[J]. Marine Science Bulletin, 2021, 40(4): 473-480. | |
[28] | 宫秀军. 贝叶斯学习理论及其应用研究[D]. 北京: 中国科学院研究生院(计算技术研究所), 2002. |
GONG X J. Research on Bayesian learning theory and its application[D]. Beijing: Institute of Computing Technology, Chinese Academy of Sciences, 2002. | |
[29] | FENTON N, NEIL M. Ranked nodes: A simple and effective way to model qualitative judgements in large-scale Bayesian Networks[M]. London: University of London, 2005. |
[30] | 蔡毅, 邢岩, 胡丹. 敏感性分析综述[J]. 北京师范大学学报:自然科学版, 2008, 44(1):9-16. |
CAI Y, XING Y, HU D. On sensitivity analysis[J]. Journal of Beijing Normal University: Natural Science, 2008, 44(1): 9-16. | |
[31] | 张晗旭, 李馨宇, 崔保山, 等. 黄河三角洲湿地生态修复工程对底栖动物的影响效果研究[J]. 环境工程, 2023, 41(1):222-231. |
ZHANG H X, LI X Y, CUI B S, et al. Effect of wetland ecological restoration project on macrobenthos community in the Yellow River Delta[J]. Environmental Engineering, 2023, 41(1): 222-231. | |
[32] | 粟丽, 许友伟, 张魁, 等. 南海区拖网渔业发展趋势及其对渔业资源的影响[J]. 南方水产科学, 2023, 19(4):41-48. |
SU L, XU Y W, ZHANG K, et al. Development trend of trawl fishery and its impact on fishery resources in South China Sea[J]. South China Fisheries Science, 2023, 19(4): 41-48. | |
[33] |
ZHANG J H, GAO Y, SHI X J, et al. Species composition and diversity of marine organisms from benthic trawling in Daya Bay of the northern South China Sea[J]. Biodiversity Science, 2017, 25(9): 1019-1030.
DOI |
[34] | NIE W, FENG D, LOHPAISANKRIT W, et al. A dynamic Bayesian network-based model for evaluating rainfall-induced landslides[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(3): 2069-2080. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||