Evaluation and analysis of the global ionospheric model accuracy in the South China Sea based on shipboard GNSS data: Take the magnetic storm in May 2024 as an example

LI Guoxiang, LUO Xiaowen, WAN Hongyang, CUI Jiaxin, WEI Wei

Journal of Marine Sciences ›› 2025, Vol. 43 ›› Issue (2) : 58-66.

PDF(3984 KB)
PDF(3984 KB)
Journal of Marine Sciences ›› 2025, Vol. 43 ›› Issue (2) : 58-66. DOI: 10.3969/j.issn.1001-909X.2025.02.007

Evaluation and analysis of the global ionospheric model accuracy in the South China Sea based on shipboard GNSS data: Take the magnetic storm in May 2024 as an example

Author information +
History +

Abstract

The global ionospheric model based on the global navigation satellite systems (GNSS)reference stations is currently the most widely used global ionospheric product. The analysis and evaluation of the reliability and accuracy of the global ionospheric model during magnetic storms is a necessary prerequisite for the rational use of the model. In this study, the data of the reference stations near the South China Sea were used to verify the reliability of the ionospheric vertial total electron content (VTEC)calculated from shipboard GNSS data, and the accuracy of the global ionospheric model in the South China Sea during magnetic storms was preliminarily analyzed and evaluated using the shipboard GNSS observation data and reference stations data. The results show that the ionospheric VTEC calculated from the shipboard data and the reference stations data have the same trend of change. During the magnetic storm, the error between the global ionospheric model value in the South China Sea region of China and the shipboard observation data and the reference stations (HKSL, PIMO)data increases, and the daily average RMSE values are 41.21, 27.40 and 30.86 TECU, respectively, which indicates that the disturbance of the ionosphere by the magnetic storm activity has led to a significant decrease in the accuracy of the global ionospheric model.

Key words

shipboard GNSS data / IGS reference station / global ionospheric model / magnetic storm / accuracy analysis / the South China Sea

Cite this article

Download Citations
LI Guoxiang , LUO Xiaowen , WAN Hongyang , et al . Evaluation and analysis of the global ionospheric model accuracy in the South China Sea based on shipboard GNSS data: Take the magnetic storm in May 2024 as an example[J]. Journal of Marine Sciences. 2025, 43(2): 58-66 https://doi.org/10.3969/j.issn.1001-909X.2025.02.007

References

[1]
YUAN Y B, WANG N B, LI Z S, et al. The BeiDou global broadcast ionospheric delay correction model (BDGIM)and its preliminary performance evaluation results[J]. Navigation, 2019, 66(1): 55-69.
[2]
FELTENS J. Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre[J]. Space Weather, 2007, 5(12): S12002.
[3]
MANNUCCI A J, WILSON B D, YUAN D N, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements[J]. Radio Science, 1998, 33(3): 565-582.
[4]
HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J, et al. The IGS VTEC maps: A reliable source of ionospheric information since 1998[J]. Journal of Geodesy, 2009, 83(3): 263-275.
[5]
FELTENS J. The activities of the ionosphere working group of the international GPS service (IGS)[J]. GPS Solutions, 2003, 7(1): 41-46.
[6]
LUO X W, XU H J, LI Z S, et al. Accuracy assessment of the global ionospheric model over the Southern Ocean based on dynamic observation[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 154: 127-131.
[7]
HO C M, WILSON B D, MANNUCCI A J, et al. A compara-tive study of ionospheric total electron content measurements using global ionospheric maps of GPS, TOPEX radar, and the Bent model[J]. Radio Science, 1997, 32(4): 1499-1512.
[8]
JEE G, LEE H B, KIM Y H, et al. Assessment of GPS global ionosphere maps (GIM)by comparison between CODE GIM and TOPEX/Jason TEC data: Ionospheric perspective[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A10): A10319.
[9]
DETTMERING D, LIMBERGER M, SCHMIDT M. Using DORIS measurements for modeling the vertical total electron content of the earth’s ionosphere[J]. Journal of Geodesy, 2014, 88(12): 1131-1143.
[10]
李子申, 王宁波, 李敏, 等. 国际GNSS服务组织全球电离层TEC格网精度评估与分析[J]. 地球物理学报, 2017, 60(10):3718-3729.
Abstract
国际GNSS服务组织(International GNSS Services,IGS)发布的全球电离层TEC格网(Global Ionospheric Map,GIM)是利用GNSS进行电离层研究的主要数据源之一.IGS电离层工作组于2016年2月正式授予中国科学院为全球第五个电离层数据分析中心,由测量与地球物理研究所和光电研究院联合实施.本文系统地总结和展示了IGS电离层工作组对各分析中心GIM评估的结果;此次评估以基准站实测电离层TEC、测高卫星电离层TEC为参考,给出了各分析中心1998-2015年GIM的总体性能.结果显示:随着IGS基准站日益增多,各分析中心GIM内符合精度由4.5~7.0TECu提升至2.5~3.5TECu;不同分析中心GIM一致性从3.0~4.5TECu提升至2.0~3.5TECu;相对于测高卫星电离层数据,CODE、CAS、JPL和UPC分析中心的GIM精度相对较高(约4.0~4.5TECu),但是在不同测高卫星评估结果之间存在不同的系统性偏差.
LI Z S, WANG N B, LI M, et al. Evaluation and analysis of the global ionospheric TEC map in the frame of international GNSS services[J]. Chinese Journal of Geophysics, 2017, 60(10): 3718-3729.
[11]
WANG D, LUO X W, WANG J L, et al. Global ionospheric model accuracy analysis using shipborne kinematic GPS data in the Arctic circle[J]. Remote Sensing, 2019, 11(17): 2062.
[12]
WU Z L, LU C X, HAN X J, et al. Real-time shipborne multi-GNSS atmospheric water vapor retrieval over the South China Sea[J]. GPS Solutions, 2023, 27(4): 179.
[13]
CHEN J, ZHANG X H, REN X D, et al. Ionospheric disturbances detected during a typhoon based on GNSS phase observations: A case study for typhoon Mangkhut over Hong Kong[J]. Advances in Space Research, 2020, 66(7): 1743-1753.
[14]
TANG J, YANG D P, LIU H. Study of Chinese regional ionospheric TEC response to magnetic storms during April 23-25, 2023[J]. GPS Solutions, 2024, 28(4): 205.
[15]
BLAGOVESHCHENSKY D V, SERGEEVA M A. Ionospheric parameters in the European sector during the magnetic storm of August 25-26, 2018[J]. Advances in Space Research, 2020, 65(1): 11-18.
[16]
CHOI B K, LEE W K, CHO S K, et al. Global GPS ionospheric modelling using spherical harmonic expansion approach[J]. Journal of Astronomy and Space Sciences, 2010, 27(4): 359-366.
[17]
来愈, 姚宜斌, 张良. 中国区域CODE全球电离层地图精度分析[J]. 测绘地理信息, 2021, 46(6):8-12.
LAI Y, YAO Y B, ZHANG L. Accuracy assessment of CODE GIM in China[J]. Journal of Geomatics, 2021, 46(6): 8-12.
[18]
SCHAER S. Mapping and predicting the earth’s ionosphere using the global positioning system[D]. Bern: der Universit at Bern, 1999.
[19]
赵奕源, 吴文坛, 赵春梅, 等. 不同活跃状态下香港区域电离层建模分析[J]. 测绘科学, 2023, 48(8):72-80.
ZHAO Y Y, WU W T, ZHAO C M, et al. Analysis of ionospheric modeling in the Hong Kong region under different active states[J]. Science of Surveying and Mapping, 2023, 48(8): 72-80.
[20]
张宝成. GNSS非差非组合精密单点定位的理论方法与应用研究[J]. 测绘学报, 2014, 43(10):1099.
Abstract
由美国GPS,俄罗斯Glonass,欧盟Galileo和中国“北斗”联合组成的全球导航卫星系统(Global Navigation Satellite System, GNSS)现已广泛地服务于地球和空间科学领域。最优地融合各类GNSS的观测数据,以快速、准确地估计位置、速度、时间、大气等参数是当前和未来阶段的研究热点。为实现此目的,本文对精密单点定位(Precise Point Positioning, PPP)技术实施了一系列的改进,完善了其模型算法,弥补了其技术缺陷,拓展了其应用范围。本文的研究主线安排如下:完善标准PPP的模型和算法。自被提出至今,PPP技术较多地采用“消电离层组合”的非差伪距和相位作为基本观测量。在观测域消除电离层将放大多路径效应,且不便于约束电离层延迟的时空变化。为此,本文提出基于GNSS原始观测值的“非组合”PPP概念,以克服上述不足。其中,电离层延迟被作为一类待估参数,其短期变化被合理地模型化为随机游走过程。同时,顾及了卫星姿态异常对改正两类系统误差(即相位绕转和卫星相位中心偏差)的影响。与标准PPP相比,非组合PPP的收敛时间较短(特别是高采样率观测数据),参数解可靠性更高。特别地,非组合PPP能提供准确的电离层信息,可作为利用GNSS研究电离层的一种新手段。丰富参考网的数据处理理论。与实时动态相对定位(RTK)相比,标准和非组合PPP存在一个共同的缺陷:无法实现整周模糊度固定,导致收敛时间过长。其根本原因在于,PPP的模糊度参数中吸收了卫星相位偏差,因此不再具备整周特性。为此,先后有研究提出利用全球或区域GNSS参考网估计卫星相位偏差,以用作PPP的额外改正信息。本文将现有参考网数据处理方法归纳为3类,推导了它们的模型等价性,并概括了它们的实施差异。特别地,本文详细地分析了3类方法的典型不足,如侧重于处理双频观测值,无法有效地提供电离层改正等,由此掣肘了它们在未来多频、多模观测条件下的适用性,同时也难以实现单频PPP模糊度固定。本文提出一种直接处理非差、非组合GNSS观测值的参考网函数模型,即非组合模型。为确保参数的可估性,采用S基理论识别了设计矩阵的列秩亏,以便于将部分参数定义为S基准,同时确保:1. 可估的(接收机和卫星)伪距和相位偏差仍均具备时不变特性;2. 可估的模糊度仍保留整周特性,互相独立且数量最多。在滤波实施中,当相邻历元所定义的S基准发生改变时,为确保滤波连续,还需要采用S转换对上一历元的滤波值实施等价变换。非组合模型具备处理不同范围(全球、广域和局域)参考网数据的能力。针对某类参考网,还可以灵活地处理单频、双频和多频数据。基于某局域网的双频GPS数据,本文利用非组合模型估计了卫星钟差、卫星相位偏差和电离层延迟,并重点考察了卫星相位偏差的稳定性和电离层延迟的内插效果。进而,分别验证了单频和双频PPP模糊度固定的效率和静、动态定位精度。此外,采用非组合模型分析若干零/短基线的双频GPS数据,估计了两台接收机的相对仪器偏差,并发现了其中较为显著的短期变化趋势,进而否定了有关接收机仪器偏差在1-3天内不随时间变化的一般性认知。概括而言,本文对PPP算法的研究紧扣未来多频、多模的应用需求,并确保能提供高精度的单频服务。从改善单测站PPP性能的角度出发,引申出一种更为实用的参考网数据处理模型,最终促进了单测站PPP模型算法的完善和应用范围的扩展。
ZHANG B C. Study on the theoretical methodology and applications of precise point positioning using undifferenced and uncombined GNSS data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10): 1099.

n.a.

[21]
汤俊, 高鑫, 李垠健, 等. 2018年8月磁暴期间北斗GEO卫星电离层TEC时空变化分析[J]. 测绘学报, 2022, 51(3):317-326.
Abstract
基于北斗GEO卫星独有的静地特性,本文利用其观测数据提取电离层TEC进行磁暴期间电离层TEC时空变化研究。同时利用全球电离层格网图GIM值进行试验对比,结果表明:北斗GEO卫星提取的TEC与GIM模型值变化趋势一致,并且前者可更有效地监测电离层的细微扰动变化。在此次磁暴发生期间,亚太地区电离层TEC变化及扰动响应特征在纬度方向差异明显。其中南北半球较高纬度区域,电离层TEC在磁暴主相阶段主要表现为正响应扰动,而赤道及北半球较低纬度区域,电离层TEC在磁暴主相及恢复相阶段均产生了强度更大、持续时间更长的正响应扰动。结合现有研究,认为造成此次电离层异常扰动的激励因素主要为东向快速穿透电场的增强及热层中性成分的变化。试验结果也证明了GEO卫星可以精准有效地监测在磁暴发生时电离层TEC的变化规律及不同空间位置处TEC产生的扰动响应特征。
TANG J, GAO X, LI Y J, et al. Spatial-temporal variations of the ionospheric TEC during the August 2018 geomagnetic storm by BeiDou GEO Satellites[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 317-326.
Considering the unique geostationary characteristic of the Beidou GEO satellites, the spatial-temporal variations of ionospheric TEC during the geomagnetic storm are studied by using GEO Satellites. The global ionospheric map (GIM)is adopted as an experimental comparison. The results show that the TEC derived from the GEO satellite observations is consistent with the GIM model. Moreover, the GEO TEC can more effectively reflect subtle variations of the ionosphere. The variation and disturbance response characteristics of the ionospheric TEC are significantly different in the latitude direction during the geomagnetic storm in the Asia-Pacific region. The ionospheric TEC mainly presents positive response disturbance during the main phase of the storm in the higher latitudes of the northern and southern hemispheres, while the equatorial and lower latitude areas in the northern hemisphere both produce positive response disturbance with greater intensity and longer duration during the main phase and the recovery phase of the storm. Based on the existing studies, we think that the excitation factors of the anomalous ionospheric disturbance are the enhancement of the eastward prompt penetration electric field and neutral composition change of the thermosphere. In this paper, the experimental results suggest that GEO satellite observations can accurately and effectively monitor the anomalous variation of ionospheric TEC and the disturbance response characteristics generated by TEC at different space locations during geomagnetic storms.
[22]
SCHÖNEMANN E. Analysis of GNSS raw observations in PPP solutions[M]. Darmstadt: Technische Universität Darmstadt, 2014.
[23]
XIANG Y, GAO Y. Improving DCB estimation using uncom-bined PPP[J]. Navigation, 2017, 64(4): 463-473.
[24]
LI Z S, YUAN Y B, LI H, et al. Two-step method for the determination of the differential code biases of COMPASS satellites[J]. Journal of Geodesy, 2012, 86(11): 1059-1076.
[25]
LI Z S, YUAN Y B, WANG N B, et al. SHPTS: Towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions[J]. Journal of Geodesy, 2015, 89(4): 331-345.
[26]
陈志华, 施昆, 徐吉松. 磁暴期全球电离层电子含量变化分析研究[J]. 全球定位系统, 2019, 44(3):38-48.
CHEN Z H, SHI K, XU J S. Analysis of global ionospheric electron content changes during magnetic storm[J]. GNSS World of China, 2019, 44(3): 38-48.
[27]
胡翔宇, 李新, 陈子越, 等. 不同地磁活动下全球电离层产品的评估[J]. 导航定位学报, 2023, 11(4):138-144.
HU X Y, LI X, CHEN Z Y, et al. Evaluation and analysis of global ionospheric maps under different geomagnetic activities[J]. Journal of Navigation and Positioning, 2023, 11(4): 138-144.
[28]
王金勇, 陈必焰, 曹恒瑞. 2017-09-07-08磁暴期间全球尺度电离层扰动[J]. 大地测量与地球动力学, 2023, 43(12):1261-1268.
WANG J Y, CHEN B Y, CAO H R. Global scale ionospheric disturbance during the September 7—8, 2017 geomagnetic storm[J]. Journal of Geodesy and Geodynamics, 2023, 43(12): 1261-1268.
[29]
冯健, 邓忠新, 甄卫民, 等. 2004年11月强磁暴期间中国地区电离层TEC扰动特性分析[J]. 电波科学学报, 2016, 31(1):157-165.
FENG J, DENG Z X, ZHEN W M, et al. Ionospheric TEC disturbances over China during the intense magnetic storm of November, 2004[J]. Chinese Journal of Radio Science, 2016, 31(1): 157-165.
PDF(3984 KB)

Accesses

Citation

Detail

Sections
Recommended

/