Optimization of FVCOM model algorithm for response coefficient method: A case study of Xiangshan Bay

QIN Zhihao, HU Song, CHEN Qinsi

Journal of Marine Sciences ›› 2025, Vol. 43 ›› Issue (2) : 67-78.

PDF(8358 KB)
PDF(8358 KB)
Journal of Marine Sciences ›› 2025, Vol. 43 ›› Issue (2) : 67-78. DOI: 10.3969/j.issn.1001-909X.2025.02.008

Optimization of FVCOM model algorithm for response coefficient method: A case study of Xiangshan Bay

Author information +
History +

Abstract

The response coefficient method is one of the widely used methods for controlling the total amount of pollutants from land-based sources in harbors and gulfs. However, the current popular ocean models do not have a tracer module that simultaneously calculates the response coefficient field of multiple release points without interfering with each other. Aiming at the characteristics of the response coefficient method, this study improves the tracer module (DYE)of the three-dimensional hydrodynamic ocean numerical model FVCOM (Finite-Volume Community Ocean Model)by adding independent modules with the same functions as the original DYE module to DYE modules in parallel, so that FVCOM can simultaneously calculate the response coefficient fields of multiple release points without interfering with each other. The improved DYE algorithm was tested with one case of ideal rectangle grid and one case of ideal Xiangshan Bay grid. The results show that the advection-diffusion process of multiple point source tracers simulated by the improved algorithm does not interfere with each other, and the simulation results are the same as those of the traditional algorithm; at the same time, the computation process of the improved algorithm takes less time, and the computation efficiency of the ideal rectangle case is increased by up to 85% and that of the Xiangshan Bay case is increased by up to 78% compared to the traditional algorithm; and the improved algorithm has a higher utilization rate of the CPU process under the condition of parallel computation than those of the traditional algorithm. The use of the improved DYE to calculate the response coefficient field can shorten the total time for marine environmental capacity assessment.

Key words

FVCOM / DYE / response coefficient / multi-source tracer independent diffusion / parallel speedup ratio / CPU utilization

Cite this article

Download Citations
QIN Zhihao , HU Song , CHEN Qinsi. Optimization of FVCOM model algorithm for response coefficient method: A case study of Xiangshan Bay[J]. Journal of Marine Sciences. 2025, 43(2): 67-78 https://doi.org/10.3969/j.issn.1001-909X.2025.02.008

References

[1]
赵骞, 杨永俊, 赵仕兰. 入海污染物总量控制制度与技术的研究进展[J]. 海洋开发与管理, 2013, 30(2):65-71.
ZHAO Q, YANG Y J, ZHAO S L. Research progress of total amount control system and technology of pollutants entering the sea[J]. Ocean Development and Management, 2013, 30(2): 65-71.
[2]
郑漓, 张永良, 韩卫国, 等. 伶仃洋水质模型与二维河口的负荷——水质输入响应关系研究[C]// 环境科学论文集1990—1991, 1992:9.
ZHENG L, ZHANG Y L, HAN W G, et al. Water-quality model of Lingding Bay and response between pollution load and water quality in two-dimensional estuary[C]// Proceedings of Environmental Science 1990-1991, 1992: 9.
[3]
费岳军, 刘莲. 象山港入海污染物总量控制及减排考核应用研究[M]. 北京: 海洋出版社,2018:177-191.
FEI Y J, LIU L. Study on the application of total pollutant control and emission reduction assessment in Xiangshan Port[M]. Beijing: China Ocean Press, 2018: 177-191.
[4]
LEENDERTSE J J. A water quality simulation model for well-mixed estuaries and coastal seas: Volume I, principles of computation[M]. Santa Monica, CA: The Rand Corporation, 1970.
[5]
张存智, 韩康, 张砚峰, 等. 大连湾污染排放总量控制研究——海湾纳污能力计算模型[J]. 海洋环境科学, 1998, 17(3):1-5.
ZHANG C Z, HAN K, ZHANG Y F, et al. Study on the total mass control of the pollutants into Dalian Bay—Numerical computing models of the receiving ability for the pollutants into the Bay[J]. Marine Environmental Science, 1998, 17(3): 1-5.
[6]
余静, 孙英兰, 张越美, 等. 宁波-舟山海域入海污染物环境容量研究[J]. 环境污染与防治, 2006, 28(1):21-24.
YU J, SUN Y L, ZHANG Y M, et al. Environmental capacity assessment of pollutants in Ningbo-Zhoushan sea area[J]. Environmental Pollution & Control, 2006, 28(1): 21-24.
[7]
刘娟, 马启敏, 孙常青. 胶州湾东岸典型河口区COD浓度响应系数分布探讨[J]. 海洋环境科学, 2008, 27(1):20-24.
LIU J, MA Q M, SUN C Q. Discussion on distribution of response coefficient of COD concentration in typical estuaries of Jiaozhou Bay[J]. Marine Environmental Science, 2008, 27(1): 20-24.
[8]
孙秀敏, 张存智, 沈小维. 长兴岛陆源排污总量控制[J]. 海洋环境科学, 2009, 28(4):399-402.
SUN X M, ZHANG C Z, SHEN X W. Total amount control of pollutant discharged into sea area around Changxingdao Island[J]. Marine Environmental Science, 2009, 28(4): 399-402.
[9]
龚艳君, 吴建政, 张学超. 威海湾入海污染物环境容量研究[J]. 海洋地质动态, 2010, 26(4):1-7.
GONG Y J, WU J Z, ZHANG X C. Environmental capacity assessment pollutants in Weihai bay sea area[J]. Marine Geology Letters, 2010, 26(4): 1-7.
[10]
虞兰兰, 陈艳丽, 张海宁, 等. 基于非线性规划的莱州湾营养盐环境容量计算[J]. 海洋科学进展, 2016, 34(2):304-312.
YU L L, CHEN Y L, ZHANG H N, et al. Environmental capacity calculation of nutrients in the Laizhou Bay based on the nonlinear programming[J]. Advances in Marine Science, 2016, 34(2): 304-312.
[11]
郑军勇, 毛新燕, 生小萱, 等. 象山港溶解无机氮环境容量研究[J]. 海洋科学, 2020, 44(4):13-20.
ZHENG J Y, MAO X Y, SHENG X X, et al. Environ-mental capacity assessment of dissolved inorganic nitrogen in the Xiangshan Bay[J]. Marine Sciences, 2020, 44(4): 13-20.
[12]
谭馨, 项学敏, 高范, 等. 基于线性规划的大连湾海域环境容量分析[J]. 大连理工大学学报, 2023, 63(3):256-264.
TAN X, XIANG X M, GAO F, et al. Marine environ-mental capacity analysis in Dalian Bay based on linear programming[J]. Journal of Dalian University of Technology, 2023, 63(3): 256-264.
[13]
朱静, 王靖飞, 田在峰, 等. 海洋环境容量研究进展及计算方法概述[J]. 水科学与工程技术, 2009(4):8-11.
ZHU J, WANG J F, TIAN Z F, et al. Marine environment capacity research progress and calculation methods[J]. Water Sciences and Engineering Technology, 2009(4): 8-11.
[14]
LUFF R, POHLMANN T. Calculation of water exchange times in the ICES-boxes with aeulerian dispersion model using a half-life time approach[J]. Deutsche Hydrografische Zeitschrift, 1995, 47(4): 287-299.
[15]
TAKEOKA H. Exchange and transport time scales in the Seto Inland Sea[J]. Continental Shelf Research, 1984, 3(4): 327-341.
[16]
丁芮, 陈学恩, 曲念东. 珠江口及邻近海域潮汐环流数值模拟Ⅱ:河口水交换和物质输运分析[J]. 中国海洋大学学报:自然科学版, 2016, 46(7):1-10.
DING R, CHEN X E, QU N D. Three-dimensional high-resolution numerical study of the tide and circulation in the Pearl River Estuary and its adjacent waters Part II: Estuarine mass transport and water exchange[J]. Periodical of Ocean University of China, 2016, 46(7): 1-10.
[17]
CHEN C S, XU Q C, HOUGHTON R, et al. A model-dye comparison experiment in the tidal mixing front zone on the southern flank of Georges Bank[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02005.
[18]
陈金瑞, 陈学恩. 近70年胶州湾水动力变化的数值模拟研究[J]. 海洋学报, 2012, 34(6):30-41.
CHEN J R, CHEN X E. Numerical simulation of the hydrodynamic evolution of the Jiaozhou Bay in the last 70 years[J]. Acta Oceanologica Sinica, 2012, 34(6): 30-41.
[19]
曹雪峰, 张宇铭, 张淑芳, 等. 基于数值模拟的大连湾水交换能力研究[J]. 海洋环境科学, 2020, 39(1):114-120.
CAO X F, ZHANG Y M, ZHANG S F, et al. Numerical simulation of water exchange in the Dalian bay of China[J]. Marine Environmental Science, 2020, 39(1): 114-120.
[20]
胡松, 陈长胜, 高郭平, 等. 全球非结构网格有限体积法海洋模式东中国海潮汐计算初步分析[J]. 上海海洋大学学报, 2012, 21(4):621-629.
HU S, CHEN C S, GAO G P, et al. Preliminary analysis of tide simulation of the East China Sea of the Global-FVCOM model[J]. Journal of Shanghai Ocean University, 2012, 21(4): 621-629.
[21]
HU S, TOWNSEND D W, CHEN C S, et al. Tidal pumping and nutrient fluxes on Georges Bank: A process-oriented modeling study[J]. Journal of Marine Systems, 2008, 74(1/2): 528-544.
[22]
陈勤思, 胡松, 王晓华, 等. 潮-径相互作用下甬江总氮污染的降解、扩散及分布模拟[J]. 中国环境科学, 2024, 44(1):344-351.
CHEN Q S, HU S, WANG X H, et al. Simulation of degradation, diffusion and distribution of total nitrogen pollution influenced by tide and runoff in Yongjiang River[J]. China Environmental Science, 2024, 44(1): 344-351.
[23]
LIU Y G, WEISBERG R H, ZHENG L Y, et al. A tracer model nowcast/forecast study of the Tampa Bay, Piney Point effluent plume: Rapid response to an environmental hazard[J]. Marine Pollution Bulletin, 2024, 198: 115840.
[24]
董礼先, 苏纪兰. 象山港水交换数值研究Ⅱ.模型应用和水交换研究[J]. 海洋与湖沼, 1999, 30(5):465-470.
DONG L X, SU J L. Numerical study of water exchange in Xiangshangang bay II. Model application and water exchange study[J]. Oceanologia et Limnologia Sinica, 1999, 30(5): 465-470.
[25]
CHEN C S, LIU H D, BEARDSLEY R C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1): 159-186.
[26]
WESSEL P, SMITH W H F. A global, self-consistent, hierarchical, high-resolution shoreline database[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B4): 8741-8743.
[27]
张丽旭, 蒋晓山, 蔡燕红. 象山港海水中营养盐分布与富营养化特征分析[J]. 海洋环境科学, 2008, 27(5):488-491.
ZHANG L X, JIANG X S, CAI Y H. Characteristics of nutrient distributions and eutrophication in seawater of the Xiangshan Harbor[J]. Marine Environmental Science, 2008, 27(5): 488-491.
[28]
朱宇航, 陈勤思, 徐一凯, 等. 基于国产操作系统的海湾污染物扩散输运预报系统:以象山港为例[J]. 海洋预报, 2022, 39(5):48-59.
ZHU Y H, CHEN Q S, XU Y K, et al. Pollutant diffusion and transport prediction system in a bay based on domestic operating system: A case study of Xiangshan Bay[J]. Marine Forecasts, 2022, 39(5): 48-59.
[29]
宋倩, 胡松. 海洋模式FVCOM2.6并行计算性能TAU分析[J]. 计算机工程与科学, 2011, 33(12):87-93.
SONG Q, HU S. Analysis of the parallel computing performance of ocean model FVCOM2.6 using TAU[J]. Computer Engineering & Science, 2011, 33(12): 87-93.
[30]
周伟明. 多核计算与程序设计[M]. 武汉: 华中科技大学出版社, 2009.
ZHOU W M. Multi-core computing and programming[M]. Wuhan: Huazhong University of Science and Technology Press, 2009.
PDF(8358 KB)

Accesses

Citation

Detail

Sections
Recommended

/