
Spatiotemporal distribution of total nitrogen in the Pearl River Estuary-Jiangmen sea area from 2003 to 2023
TIAN Hongzhen, ZHANG Zheng, DENG Shaofu, YANG Jia, LIU Qinping
Journal of Marine Sciences ›› 2025, Vol. 43 ›› Issue (2) : 79-87.
Spatiotemporal distribution of total nitrogen in the Pearl River Estuary-Jiangmen sea area from 2003 to 2023
Total nitrogen (TN)is an important indicator for measuring water eutrophication, and understanding its spatiotemporal variation is crucial for marine ecological protection. This study selected the Pearl River Estuary-Jiangmen sea area as the research area and utilized TN measurement data from 2021 to 2023, as well as the MODIS data from 2003 to 2023 and the Sentinel-3 remote sensing images from 2017 to 2023. By selecting high-correlation band combinations and constructing random forest regression models to invert TN mass concentration, the spatiotemporal variation characteristics of TN mass concentration in the region from 2003 to 2023 were analyzed. The results indicated that the inversion model achieved good fitting accuracy (R2=0.797-0.931). From 2003 to 2023, the TN mass concentration in the Pearl River Estuary-Jiangmen sea area showed an overall decreasing trend, with relatively high mass concentrations from 2003 to 2015, followed by a significant decline after 2016. TN showed obvious dry/wet seasonal variations, and the variations within the year in the estuary and shallow water areas were also significant. This study revealed the trend and distribution characteristics of TN in the study area through remote sensing inversion, which can provide a basis and reference for the formulation of pollution control measures in the coastal waters.
Pearl River Estuary / Jiangmen sea area / total nitrogen mass concentration / random forest regression / dry season / wet season / marine pollutant management
[1] |
|
[2] |
|
[3] |
|
[4] |
谢朝阳, 牛海林, 宋玉庭, 等. 基于Landsat 8的沱沱河流域总氮和氨氮反演模型研究[J]. 环境监测管理与技术, 2024, 36(4):54-58.
|
[5] |
|
[6] |
侯德. 两种机器学习算法在水质预测中的应用[J]. 环境污染与防治, 2024, 46(11):1596-1600,1607.
|
[7] |
李欣海. 随机森林模型在分类与回归分析中的应用[J]. 应用昆虫学报, 2013, 50(4):1190-1197.
|
[8] |
赵慈, 沈鹏, 李倩, 等. 基于GF-1 WFV影像和随机森林算法的总氮反演研究[J]. 环境科学与技术, 2021, 44(9):23-30.
|
[9] |
梁博, 吴子怡, 梁菊平, 等. 基于国外经验的珠江口总氮综合治理探究[J]. 环境保护, 2023, 51(19):21-23.
|
[10] |
滕越, 邹斌, 叶小敏. HY-1C 卫星海岸带成像仪叶绿素a浓度反演研究[J]. 海洋学报, 2022, 44(5):25-34.
|
[11] |
桓清柳, 庞仁松, 周秋伶, 等. 深圳近岸海域氮、磷营养盐变化趋势及其与赤潮发生的关系[J]. 海洋环境科学, 2016, 35(6):908-914.
|
[12] |
陈晓翔, 丁晓英. 用FY-1D数据估算珠江口海域悬浮泥沙含量[J]. 中山大学学报:自然科学版, 2004(S1):194-196.
|
[13] |
覃超梅, 孙凯峰, 赵庄明, 等. 江门市近岸海域春季环境质量评价[J]. 环境污染与防治, 2016, 38(12):65-71.
|
[14] |
陈亚杰, 王宗明, 毛德华. 基于密集时间序列Sentinel数据的湖滨湿地分布动态监测研究——以鄱阳湖为例[J]. 生态学报, 2025, 45(2):1-14.
|
[15] |
|
[16] |
|
[17] |
罗昕瑶, 国巧真, 曹俊武, 等. 实测数据支持下的地表水浊度与总氮遥感反演——以长江流域中段为例[J]. 中国环境监测, 2024, 40(4):261-271.
|
[18] |
|
[19] |
孟畅, 红梅, 李斐. 高光谱敏感波段筛选与机器学习协同提升土壤重金属预测精度[J]. 生态环境学报, 2025, 34(6):950-960.
为探究土壤重金属有效波段提取方法,明确敏感波段耦合机器学习模型对土壤重金属浓度的估测潜力,以内蒙古多个废弃尾矿区周边典型污染场地为研究对象,通过高光谱遥感数据预测土壤Cu、Zn、Pb和Cr重金属的浓度。基于16种敏感波段提取方法(按过滤法、包裹法、嵌入法分类)并结合决策树(DT)、随机森林(RF)和梯度决策树(GBDT)模型,进行重金属浓度反演。结果表明,相比过滤法和嵌入法,包裹法提取的敏感波段对重金属浓度的解释性最高,敏感波段主要集中在450-750 nm和1829-2493 nm。在6种包裹法中,竞争自适应重加权抽样法(CARS)和可变迭代空间收缩法(VISSA)分别为Cu和Cr提供了关键光谱信息,而连续投影算法(SPA)则对Zn和Pb具有较高敏感度。相比DT和RF模型,GBDT在聚焦敏感波段时表现出更强大的拟合性能,耦合CARS、VISSA和SPA方法能更准确地估测土壤重金属浓度。利用独立矿区验证时,CARS、VISSA和SPA组合GBDT模型对土壤重金属浓度仍具有稳定的估测性能,Cu、Zn、Pb和Cr的决定系数(R<sup>2</sup>)分别为0.91、0.89、0.87和0.84。该研究构建的土壤重金属监测模型能有效增强土壤光谱信息可解释性,为矿区土壤重金属的快速监测提供了具有实际应用潜力的新方法。
|
[20] |
熊艳, 高仁强, 徐战亚. 机载LiDAR点云数据降维与分类的随机森林方法[J]. 测绘学报, 2018, 47(4):508-518.
探索自动化的激光点云分类方法对于三维建模、城市土地分类、DEM制图等应用具有重要作用。考虑到现有的点云分类算法在提取依赖邻域结构的特征参数时面临邻域尺度的选择难、数据维度高、计算复杂,并且缺乏对分类特征参数的重要性评估和选择等问题,本文提出了基于随机森林的机载LiDAR点云数据降维与分类方法。在分析点云数据的高程、回波、强度等属性特征的基础上,提取归一化高度、高度统计量、表面特征、空间分布特征、回波特征及强度特征6大类特征参数,并构建多尺度特征参数,运用随机森林的特征选择算法对分类特征集进行优化,然后进行点云分类。试验结果表明,基于随机森林的特征选择方法可以有效地降低特征维度,并且使得总体分类精度达到94.3%(Kappa系数为0.922),相比于使用全部特征分类和SVM分类方法而言,该方法的总体分类精度均有一定程度的提高;特征的重要性度量结果表明,归一化高度特征在点云分类中所起的作用最大。
Exploring automatic point cloud classification method is of great importance to 3D modeling,city land classification,DEM mapping and etc.To overcome the problem that extracting geometric feature for point cloud classification involved neighbor structure meets the challenge that the optimal neighbor scale parameter,high data dimension and complex computation,lacking efficient feature importance analysis and feature selection strategy,this paper proposed a point cloud classification and dimension reduction method based on random forest.After analyzing the characteristic of elevation,intensity and echo of laser points,this paper extracted a total of 6 feature types like normalized height feature,height statistic feature,surface metric feature,spatial distribution feature,echo feature,intensity feature,then built a multi-scale feature parameter from them.Finally,a supervised classification was conducted using a random forest algorithm to optimal the feature set and choose the best feature set to classify the point cloud.Results indicate that,the overall accuracy of the proposed method is 94.3% (Kappa coefficient is 0.922).The proposed method got an improvement in the overall accuracy when compared with no feature selection strategy and SVM classification strategy; The feature importance analysis indicates that the normalized height is the most important feature for the classification.
|
[21] |
中国近岸海域环境质量公报(2016)[R]. 北京: 中华人民共和国环境保护部.
Bulletin of Marine Ecology and Environment Status of China in 2016[R]. Beijing: Ministry of Ecology and Environment of the People’s Republic of China.
|
[22] |
中国海洋生态环境状况公报(2023)[R]. 北京: 中华人民共和国生态环境部.
2023 Bulletin of Marine Ecology and Environment Status of China[R]. Beijing: Ministry of Ecology and Environment, People’s Republic of China.
|
[23] |
钱燕, 卢康明. 2021年珠江流域旱情分析与思考[J]. 中国防汛抗旱, 2022, 32(6):27-30.
|
/
〈 |
|
〉 |