Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (4): 1-11.DOI: 10.3969/j.issn.1001-909X.2023.04.001
ZHAO Yueran1(), FAN Gaojing2, WU Jiaqi1,3, SUN Weiping1, PAN Jianming1, HAN Zhengbing1,*()
Received:
2023-03-01
Revised:
2023-05-05
Online:
2023-12-15
Published:
2024-01-30
CLC Number:
ZHAO Yueran, FAN Gaojing, WU Jiaqi, SUN Weiping, PAN Jianming, HAN Zhengbing. The seasonal blooming characteristics of phytoplankton and POC export flux in the waters around South Georgia Island: Based on BGC-Argo and satellite remote sensing observations[J]. Journal of Marine Sciences, 2023, 41(4): 1-11.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2023.04.001
Fig.1 Study area and the movement trajectory of BGC-Argo floats (Contour lines represent water depth, unit: m. Blue dots represent the profiling float stations. The thick black line and red line indicate the southern Antarctic circumpolar current front (SACCF) and polar front (PF), respectively. Color bar uses log transformation, and the color represents the climatological distribution of Chl-a from December to February in the southern hemisphere from 1997 to 2017. The data are from the multi-sensor merged product of the European Space Agency’s GlobColour project with a spatial resolution of 25 km × 25 km and a temporal resolution of 1 month.)
年份 | 位置 | 混合层深度/m | POC储量/(mmol·m-2) | NCP/(mmol·m-2) | POC输出通量/(mmol·m-2·d-1) |
---|---|---|---|---|---|
2017/2018 | 南极半岛东北部海域 | 38.49±18.93 | 610.32±124.83 | 3 976.14±124.53 | 7.12±3.90 |
2018/2019 | 乔治亚海盆 | 62.40±24.55 | 691.62±158.92 | 4 591.86±316.12 | 45.29±5.40 |
Tab.1 Summer mean values of MLD, POC storage, NCP, and POC export flux based on BGC-Argo
年份 | 位置 | 混合层深度/m | POC储量/(mmol·m-2) | NCP/(mmol·m-2) | POC输出通量/(mmol·m-2·d-1) |
---|---|---|---|---|---|
2017/2018 | 南极半岛东北部海域 | 38.49±18.93 | 610.32±124.83 | 3 976.14±124.53 | 7.12±3.90 |
2018/2019 | 乔治亚海盆 | 62.40±24.55 | 691.62±158.92 | 4 591.86±316.12 | 45.29±5.40 |
Fig.4 Floating bar chart of the difference in Chl-a mass concentration between 5 m and 50 m observed by BGC-Argo (The top and bottom of the bars represent Chl-a5 m or Chl-a50 m respectively. Green bars indicate that Chl-a5 m is higher than Chl-a50 m, while orange bars indicate the opposite, and the length of the bars represents the difference.)
Fig.6 Time series of POC export in the waters near South Georgia Island (The shaded area represents the summer seasons of 2017/2018 and 2018/2019; the trend line shows the temporal variation of POC export)
[1] |
GRUBER N, LANDSCHÜTZER P, LOVENDUSKI N S. The variable Southern Ocean carbon sink[J]. Annual Review of Marine Science, 2019, 11: 159-186.
DOI PMID |
[2] |
MARTIN J H. Glacial-interglacial CO2 change: The iron hypothesis[J]. Paleoceanography, 1990, 5(1): 1-13.
DOI URL |
[3] |
YOON J E, YOO K C, MACDONALD A M, et al. Reviews and syntheses: Ocean iron fertilization experiments-past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project[J]. Biogeosciences, 2018, 15(19): 5847-5889.
DOI URL |
[4] |
BOYD P W, JICKELLS T, LAW C S, et al. Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions[J]. Science, 2007, 315(5812): 612-617.
PMID |
[5] |
MARTIN P, LOEFF M R, CASSAR N, et al. Iron fertili-zation enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX[J]. Global Biogeochemical Cycles, 2013, 27(3): 871-881.
DOI URL |
[6] |
PERISSINOTTO R, LAUBSCHER R K, MCQUAID C D. Marine productivity enhancement around Bouvet and the South Sandwich Islands (Southern Ocean)[J]. Marine Ecology Progress Series, 1992, 88(1): 41-53.
DOI URL |
[7] |
PERISSINOTTO R, LUTJEHARMS J, VAN BALLEGOOYEN R. Biological-physical interactions and pelagic productivity at the Prince Edward Islands, Southern Ocean[J]. Journal of Marine Systems, 2000, 24(3): 327-341.
DOI URL |
[8] | CAVAGNA A J, FRIPIAT F, ELSKENS M, et al. Biological productivity regime and associated N cycling in the vicinity of Kerguelen Island area, Southern Ocean[J]. Biogeosciences Discussions, 2014, 11(12): 18073-18104. |
[9] |
ARRIGO K R, VAN DIJKEN G L, ALDERKAMP A C, et al. Early spring phytoplankton dynamics in the western Antarctic peninsula[J]. Journal of Geophysical Research: Oceans, 2017, 122(12): 9350-9369.
DOI URL |
[10] |
KORB R E, WHITEHOUSE M. Contrasting primary production regimes around South Georgia, Southern Ocean: Large blooms versus high nutrient, low chlorophyll waters[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(5): 721-738.
DOI URL |
[11] | MATANO R P, COMBES V, YOUNG E F, et al. Modeling the impact of ocean circulation on chlorophyll blooms around South Georgia, Southern Ocean[J]. Journal of Geophysical Research: Oceans, 2020, 125(9): e2020JC016391. |
[12] |
MONGIN M, MOLINA E, TRULL T W. Seasonality and scale of the Kerguelen Plateau phytoplankton bloom: A remote sensing and modeling analysis of the influence of natural iron fertilization in the Southern Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2008, 55(5/6/7): 880-892.
DOI URL |
[13] |
MARALDI C, MONGIN M, COLEMAN R, et al. The influence of lateral mixing on a phytoplankton bloom: Distribution in the Kerguelen Plateau region[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(6): 963-973.
DOI URL |
[14] |
POLLARD R T, VENABLES H J, READ J F, et al. Large-scale circulation around the Crozet Plateau controls an annual phytoplankton bloom in the Crozet Basin[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(18/19/20): 1915-1929.
DOI URL |
[15] |
PLANQUETTE H, STATHAM P J, FONES G R, et al. Dissolved iron in the vicinity of the Crozet Islands, Southern Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(18/19/20): 1999-2019.
DOI URL |
[16] |
BORRIONE I, SCHLITZER R. Distribution and recurrence of phytoplankton blooms around South Georgia, Southern Ocean[J]. Biogeosciences, 2013, 10(1): 217-231.
DOI URL |
[17] |
GILPIN L C, PRIDDLE J, WHITEHOUSE M J, et al. Primary production and carbon uptake dynamics in the vicinity of South Georgia-balancing carbon fixation and removal[J]. Marine Ecology Progress Series, 2002, 242: 51-62.
DOI URL |
[18] |
SCHLOSSER C, SCHMIDT K, AQUILINA A, et al. Mechanisms of dissolved and labile particulate iron supply to shelf waters and phytoplankton blooms off South Georgia, Southern Ocean[J]. Biogeosciences, 2018, 15(16): 4973-4993.
DOI URL |
[19] | BORRIONE I. Island effects on marine production and circulation around the island of South Georgia, Southern Ocean[D]. Germany: Universität Bremen, 2013. |
[20] | BRANDON M A, MURPHY E J, TRATHAN P N, et al. Physical oceanographic conditions to the northwest of the sub-Antarctic Island of South Georgia[J]. Journal of Geophysical Research: Oceans, 2000, 105(C10): 23983-23996. |
[21] |
WARD P, WHITEHOUSE M, MEREDITH M, et al. The Southern Antarctic Circumpolar Current Front: Physical and biological coupling at South Georgia[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(12): 2183-2202.
DOI URL |
[22] |
MOIGNE F, HENSON S A, CAVAN E, et al. What causes the inverse relationship between primary production and export efficiency in the Southern Ocean?[J]. Geophysical Research Letters, 2016, 43(9): 4457-4466.
DOI URL |
[23] |
WHITEHOUSE M J, KORB R E, ATKINSON A, et al. Formation, transport and decay of an intense phytoplankton bloom within the high-nutrient low-chlorophyll belt of the Southern Ocean[J]. Journal of Marine Systems, 2008, 70(1/2): 150-167.
DOI URL |
[24] | REMBAUVILLE M, MANNO C, TARLING G A, et al. Strong contribution of diatom resting spores to deep-sea carbon transfer in naturally iron-fertilized waters downstream of South Georgia[J]. Deep-Sea Research Part I: Oceano-graphic Research Papers, 2016, 115: 22-35. |
[25] |
AINSWORTH J, POULTON A J, LOHAN M C, et al. Iron cycling during the decline of a South Georgia diatom bloom[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2023, 208: 105269.
DOI URL |
[26] | CHAI F, JOHNSON K S, CLAUSTRE H, et al. Monitoring ocean biogeochemistry with autonomous platforms[J]. Nature Reviews Earth & Environment, 2020, 1(6): 315-326. |
[27] |
ORSI A H, WHITWORTH T, NOWLIN W D. On the meridional extent and fronts of the Antarctic Circumpolar Current[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42(5): 641-673.
DOI URL |
[28] |
THORPE S E, HEYWOOD K J, BRANDON M A, et al. Variability of the southern Antarctic Circumpolar Current front north of South Georgia[J]. Journal of Marine Systems, 2002, 37(1/2/3): 87-105.
DOI URL |
[29] |
WHITEHOUSE M J, PRIDDLE J, SYMON C. Seasonal and annual change in seawater temperature, salinity, nutrient and chlorophyll a distributions around South Georgia, South Atlantic[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1996, 43(4): 425-443.
DOI URL |
[30] |
JOHNSON K S, PLANT J N, COLETTI L J, et al. Biogeochemical sensor performance in the SOCCOM profiling float array[J]. Journal of Geophysical Research: Oceans, 2017, 122(8): 6416-6436.
DOI URL |
[31] |
BUESSELER K O. The decoupling of production and particulate export in the surface ocean[J]. Global Biogeochemical Cycles, 1998, 12(2): 297-310.
DOI URL |
[32] |
NELSON D M, ANDERSON R F, BARBER R T, et al. Vertical budgets for organic carbon and biogenic silica in the Pacific sector of the Southern Ocean, 1996-1998[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9/10): 1645-1674.
DOI URL |
[33] |
SMITH W O, SHIELDS A R, DREYER J C, et al. Interannual variability in vertical export in the Ross Sea: Magnitude, composition, and environmental correlates[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(2): 147-159.
DOI URL |
[34] |
PINCKNEY J L. A mini-review of the contribution of benthic microalgae to the ecology of the continental shelf in the South Atlantic Bight[J]. Estuaries and Coasts, 2018, 41(7): 2070-2078.
DOI |
[35] |
HILLEBRAND H, SOMMER U. The nutrient stoichiometry of benthic microalgal growth: Redfield proportions are optimal[J]. Limnology and Oceanography, 1999, 44(2): 440-446.
DOI URL |
[36] |
SALLÉE J B, SPEER K G, RINTOUL S R. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode[J]. Nature Geoscience, 2010, 3(4): 273-279.
DOI |
[37] | MOORE J K, ABBOTT M R. Phytoplankton chlorophyll distributions and primary production in the Southern Ocean[J]. Journal of Geophysical Research: Oceans, 2000, 105(C12): 28709-28722. |
[38] |
MOORE J K, ABBOTT M R, RICHMAN J G, et al. SeaWiFS satellite ocean color data from the Southern Ocean[J]. Geophysical Research Letters, 1999, 26(10): 1465-1468.
DOI URL |
[39] |
HOLM-HANSEN O, KAHRU M, HEWES C D, et al. Temporal and spatial distribution of chlorophyll-a in surface waters of the Scotia Sea as determined by both shipboard measurements and satellite data[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2004, 51(12/13): 1323-1331.
DOI URL |
[40] |
KORB R E, WHITEHOUSE M J, WARD P. SeaWiFS in the Southern Ocean: Spatial and temporal variability in phytoplankton biomass around South Georgia[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2004, 51(1/2/3): 99-116.
DOI URL |
[41] |
KORB R E, WHITEHOUSE M J, ATKINSON A, et al. Magnitude and maintenance of the phytoplankton bloom at South Georgia: A naturally iron-replete environment[J]. Marine Ecology Progress Series, 2008, 368: 75-91.
DOI URL |
[42] |
BORRIONE I, AUMONT O, NIELSDÓTTIR M C, et al. Sedimentary and atmospheric sources of iron around South Georgia, Southern Ocean: A modelling perspective[J]. Biogeosciences, 2014, 11(7): 1981-2001.
DOI URL |
[43] |
HOLM-HANSEN O, HEWES C D. Deep chlorophyll-a maxima (DCMs) in Antarctic waters[J]. Polar Biology, 2004, 27(11): 699-710.
DOI URL |
[44] | TRULL T W, BRAY S G, MANGANINI S J, et al. Moored sediment trap measurements of carbon export in the Subantarctic and Polar Frontal zones of the Southern Ocean, south of Australia[J]. Journal of Geophysical Research: Oceans, 2001, 106(C12): 31489-31509. |
[45] |
JOUANDET M P, BLAIN S, METZL N, et al. Interannual variability of net community production and air-sea CO2 flux in a naturally iron fertilized region of the Southern Ocean (Kerguelen Plateau)[J]. Antarctic Science, 2011, 23(6): 589-596.
DOI URL |
[46] |
BOYD P W, CLAUSTRE H, LEVY M, et al. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature, 2019, 568(7752): 327-335.
DOI |
[47] | XING X, WELLS M, CHEN S L, et al. Enhanced winter carbon export observed by BGC-Argo in the Northwest Pacific Ocean[J]. Geophysical Research Letters, 2020, 47: e2020GL089847. |
[48] |
WARD P, SHREEVE R, WHITEHOUSE M, et al. Phyto-and zooplankton community structure and production around South Georgia (Southern Ocean) during Summer 2001/02[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(3): 421-441.
DOI URL |
[49] |
BELCHER A, TARLING G A, MANNO C, et al. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring[J]. Polar Biology, 2017, 40(10): 2001-2013.
DOI PMID |
[50] |
MANNO C, STOWASSER G, FIELDING S, et al. Deep carbon export peaks are driven by different biological pathways during the extended Scotia Sea (Southern Ocean) bloom[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2022, 205: 105183.
DOI URL |
[51] | SALTER I, KEMP A E S, MOORE C M, et al. Diatom resting spore ecology drives enhanced carbon export from a naturally iron-fertilized bloom in the Southern Ocean[J]. Global Biogeochemical Cycles, 2012, 26(1): 1-17. |
[52] |
BELCHER A, HENLEY S, HENDRY K, et al. Seasonal cycles of biogeochemical fluxes in the Scotia Sea, Southern Ocean: A stable isotope approach[J]. Biogeosciences, 2023, 20(6): 3573-3591.
DOI URL |
[53] | FRANCOIS R, HONJO S, KRISHFIELD R, et al. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean[J]. Global Biogeochemical Cycles, 2002, 16(4): 34-1-34-20. |
[54] |
GIERING S L C, HOSKING B, BRIGGS N, et al. The interpretation of particle size, shape, and carbon flux of marine particle images is strongly affected by the choice of particle detection algorithm[J]. Frontiers in Marine Science, 2020, 7: 564.
DOI URL |
[1] | MENG Yu, CHEN Shuangling. Quantification of nitracline depth in seawater [J]. Journal of Marine Sciences, 2023, 41(3): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||