Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (3): 119-130.DOI: 10.3969/j.issn.1001-909X.2024.03.010
Previous Articles Next Articles
SHAO Zhiyuan1,2,3(), ZHAO Jiechen1,2,4,*(), XIE Longxiang1,2,3, MU Fangru1,2, XIAO Jing1,2, LIU Minjun1,2, CHEN Xuejing1,2
Received:
2023-10-08
Revised:
2024-04-17
Online:
2024-09-15
Published:
2024-11-25
CLC Number:
SHAO Zhiyuan, ZHAO Jiechen, XIE Longxiang, MU Fangru, XIAO Jing, LIU Minjun, CHEN Xuejing. Classification accuracy and influencing factors of Arctic sea ice based on deep learning and Sentinel-1 satellite imagery[J]. Journal of Marine Sciences, 2024, 42(3): 119-130.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.03.010
Fig.1 The spatial distribution of Sentinel-1 images (The red number indicates the image serial number, and the red box indicates the image spatial position.)
序号 | 成像日期 | 经度 | 纬度 | 卫星 | 用途 |
---|---|---|---|---|---|
1 | 2021-10-27 | 131.45°W—111.54°W | 73.83°N —78.49°N | Sentinel-1B | 测试 |
2 | 2022-01-30 | 111.25°W—95.77°W | 70.29°N —74.80°N | Sentinel-1A | 测试 |
3 | 2022-01-31 | 72.80°W—58.44°W | 68.99°N —73.47°N | Sentinel-1A | 测试 |
4 | 2022-10-31 | 134.51°W—107.33°W | 76.85°N —81.92°N | Sentinel-1A | 训练 |
5 | 2022-10-31 | 140.17°W—124.76°W | 69.97°N —74.69°N | Sentinel-1A | 训练 |
6 | 2022-11-24 | 113.12°W—93.62°W | 73.58°N —78.22°N | Sentinel-1A | 训练 |
7 | 2022-11-26 | 111.20°W—95.77°W | 70.29°N —74.80°N | Sentinel-1A | 训练 |
8 | 2022-11-27 | 96.81°W—81.42°W | 70.25°N —74.76°N | Sentinel-1A | 训练 |
9 | 2023-01-18 | 86.97°W—68.44°W | 72.78°N —77.41°N | Sentinel-1A | 测试 |
10 | 2021-12-09 | 77.70°E—99.03°E | 77.24°N —82.11°N | Sentinel-1B | 测试 |
11 | 2022-01-16 | 59.76°E—79.41°E | 73.68°N —78.33°N | Sentinel-1A | 测试 |
12 | 2022-01-27 | 112.31°E—139.43°E | 76.82°N —81.90°N | Sentinel-1A | 训练 |
13 | 2022-01-27 | 109.03°E—128.43°E | 73.55°N —78.19°N | Sentinel-1A | 训练 |
14 | 2022-11-29 | 81.86°E—101.92°E | 73.00°N —78.31°N | Sentinel-1A | 训练 |
15 | 2022-12-10 | 39.32°E—52.06°E | 66.83°N —71.26°N | Sentinel-1A | 训练 |
16 | 2023-02-04 | 87.81°E—115.34°E | 76.98°N —82.06°N | Sentinel-1A | 测试 |
17 | 2023-02-20 | 131.25°E—151.36°E | 73.03°N —78.34°N | Sentinel-1A | 训练 |
18 | 2023-03-08 | 49.27°E—64.70°E | 72.78°N —77.41°N | Sentinel-1A | 测试 |
Tab.1 The coding list of Sentinel-1 images
序号 | 成像日期 | 经度 | 纬度 | 卫星 | 用途 |
---|---|---|---|---|---|
1 | 2021-10-27 | 131.45°W—111.54°W | 73.83°N —78.49°N | Sentinel-1B | 测试 |
2 | 2022-01-30 | 111.25°W—95.77°W | 70.29°N —74.80°N | Sentinel-1A | 测试 |
3 | 2022-01-31 | 72.80°W—58.44°W | 68.99°N —73.47°N | Sentinel-1A | 测试 |
4 | 2022-10-31 | 134.51°W—107.33°W | 76.85°N —81.92°N | Sentinel-1A | 训练 |
5 | 2022-10-31 | 140.17°W—124.76°W | 69.97°N —74.69°N | Sentinel-1A | 训练 |
6 | 2022-11-24 | 113.12°W—93.62°W | 73.58°N —78.22°N | Sentinel-1A | 训练 |
7 | 2022-11-26 | 111.20°W—95.77°W | 70.29°N —74.80°N | Sentinel-1A | 训练 |
8 | 2022-11-27 | 96.81°W—81.42°W | 70.25°N —74.76°N | Sentinel-1A | 训练 |
9 | 2023-01-18 | 86.97°W—68.44°W | 72.78°N —77.41°N | Sentinel-1A | 测试 |
10 | 2021-12-09 | 77.70°E—99.03°E | 77.24°N —82.11°N | Sentinel-1B | 测试 |
11 | 2022-01-16 | 59.76°E—79.41°E | 73.68°N —78.33°N | Sentinel-1A | 测试 |
12 | 2022-01-27 | 112.31°E—139.43°E | 76.82°N —81.90°N | Sentinel-1A | 训练 |
13 | 2022-01-27 | 109.03°E—128.43°E | 73.55°N —78.19°N | Sentinel-1A | 训练 |
14 | 2022-11-29 | 81.86°E—101.92°E | 73.00°N —78.31°N | Sentinel-1A | 训练 |
15 | 2022-12-10 | 39.32°E—52.06°E | 66.83°N —71.26°N | Sentinel-1A | 训练 |
16 | 2023-02-04 | 87.81°E—115.34°E | 76.98°N —82.06°N | Sentinel-1A | 测试 |
17 | 2023-02-20 | 131.25°E—151.36°E | 73.03°N —78.34°N | Sentinel-1A | 训练 |
18 | 2023-03-08 | 49.27°E—64.70°E | 72.78°N —77.41°N | Sentinel-1A | 测试 |
区域 | 切片大小 | 准确率/% | 整体准确 率/% | Kappa 系数/% | ||
---|---|---|---|---|---|---|
海水 | 一年冰 | 多年冰 | ||||
2号 | 32×32像素 | 100.00 | 100.00 | 98.88 | 99.62 | 99.44 |
16×16像素 | 100.00 | 100.00 | 98.88 | 99.62 | 99.44 | |
8×8像素 | 99.25 | 100.00 | 99.88 | 99.71 | 99.63 | |
16号 | 32×32像素 | 100.00 | 100.00 | 97.50 | 99.17 | 98.75 |
16×16像素 | 100.00 | 99.63 | 99.38 | 99.67 | 99.50 | |
8×8像素 | 100.00 | 99.88 | 100.00 | 99.96 | 99.94 |
Tab.2 Evaluation for classification results of different slice size images
区域 | 切片大小 | 准确率/% | 整体准确 率/% | Kappa 系数/% | ||
---|---|---|---|---|---|---|
海水 | 一年冰 | 多年冰 | ||||
2号 | 32×32像素 | 100.00 | 100.00 | 98.88 | 99.62 | 99.44 |
16×16像素 | 100.00 | 100.00 | 98.88 | 99.62 | 99.44 | |
8×8像素 | 99.25 | 100.00 | 99.88 | 99.71 | 99.63 | |
16号 | 32×32像素 | 100.00 | 100.00 | 97.50 | 99.17 | 98.75 |
16×16像素 | 100.00 | 99.63 | 99.38 | 99.67 | 99.50 | |
8×8像素 | 100.00 | 99.88 | 100.00 | 99.96 | 99.94 |
区域 | 偏移量 处理情况 | 准确率/% | 整体准确 率/% | Kappa 系数/% | ||
---|---|---|---|---|---|---|
海水 | 一年冰 | 多年冰 | ||||
3号 | 未处理 | 99.88 | 99.63 | 77.63 | 92.37 | 88.56 |
处理后 | 99.25 | 100.00 | 100.00 | 99.83 | 99.75 | |
10号 | 未处理 | 99.75 | 95.75 | 96.38 | 97.29 | 95.94 |
处理后 | 99.25 | 100.00 | 100.00 | 99.75 | 99.63 |
Tab.3 Evaluation of classification accuracy of sea ice in different false color images
区域 | 偏移量 处理情况 | 准确率/% | 整体准确 率/% | Kappa 系数/% | ||
---|---|---|---|---|---|---|
海水 | 一年冰 | 多年冰 | ||||
3号 | 未处理 | 99.88 | 99.63 | 77.63 | 92.37 | 88.56 |
处理后 | 99.25 | 100.00 | 100.00 | 99.83 | 99.75 | |
10号 | 未处理 | 99.75 | 95.75 | 96.38 | 97.29 | 95.94 |
处理后 | 99.25 | 100.00 | 100.00 | 99.75 | 99.63 |
区域 | 深度学习模型 | 准确率/% | 整体准确率/% | Kappa系数/% | ||
---|---|---|---|---|---|---|
海水 | 一年冰 | 多年冰 | ||||
ResNet | 99.50 | 100.00 | 93.75 | 97.75 | 96.63 | |
1号 | Vision Transformer | 98.63 | 100.00 | 99.63 | 98.12 | 97.19 |
Swin Transformer | 97.50 | 100.00 | 100.00 | 99.17 | 98.75 | |
ResNet | 100.00 | 100.00 | 94.38 | 98.12 | 97.19 | |
2号 | Vision Transformer | 96.88 | 99.88 | 100.00 | 98.92 | 98.38 |
Swin Transformer | 99.25 | 100.00 | 99.88 | 99.71 | 99.63 | |
ResNet | 100.00 | 100.00 | 98.50 | 99.50 | 99.25 | |
3号 | Vision Transformer | 95.25 | 100.00 | 98.88 | 98.42 | 97.63 |
Swin Transformer | 99.25 | 100.00 | 100.00 | 99.75 | 99.63 | |
ResNet | 99.88 | 99.88 | 97.88 | 99.17 | 98.81 | |
9号 | Vision Transformer | 98.88 | 100.00 | 100.00 | 99.62 | 99.44 |
Swin Transformer | 99.88 | 99.88 | 99.25 | 99.67 | 99.50 | |
ResNet | 100.00 | 100.00 | 97.50 | 99.62 | 99.44 | |
10号 | Vision Transformer | 97.50 | 100.00 | 100.00 | 99.17 | 98.75 |
Swin Transformer | 99.50 | 100.00 | 100.00 | 99.75 | 99.63 | |
ResNet | 100.00 | 100.00 | 99.38 | 99.79 | 99.69 | |
11号 | Vision Transformer | 99.25 | 100.00 | 100.00 | 99.83 | 99.75 |
Swin Transformer | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
ResNet | 99.50 | 100.00 | 98.00 | 99.17 | 98.75 | |
16号 | Vision Transformer | 95.13 | 100.00 | 100.00 | 98.37 | 97.56 |
Swin Transformer | 100.00 | 99.88 | 100.00 | 99.96 | 99.94 | |
ResNet | 100.00 | 100.00 | 93.88 | 97.96 | 96.94 | |
18号 | Vision Transformer | 97.13 | 100.00 | 99.88 | 99.00 | 98.50 |
Swin Transformer | 98.63 | 100.00 | 99.63 | 99.42 | 99.13 |
Tab.4 Evaluation of classification accuracy of sea ice in different deep learning models
区域 | 深度学习模型 | 准确率/% | 整体准确率/% | Kappa系数/% | ||
---|---|---|---|---|---|---|
海水 | 一年冰 | 多年冰 | ||||
ResNet | 99.50 | 100.00 | 93.75 | 97.75 | 96.63 | |
1号 | Vision Transformer | 98.63 | 100.00 | 99.63 | 98.12 | 97.19 |
Swin Transformer | 97.50 | 100.00 | 100.00 | 99.17 | 98.75 | |
ResNet | 100.00 | 100.00 | 94.38 | 98.12 | 97.19 | |
2号 | Vision Transformer | 96.88 | 99.88 | 100.00 | 98.92 | 98.38 |
Swin Transformer | 99.25 | 100.00 | 99.88 | 99.71 | 99.63 | |
ResNet | 100.00 | 100.00 | 98.50 | 99.50 | 99.25 | |
3号 | Vision Transformer | 95.25 | 100.00 | 98.88 | 98.42 | 97.63 |
Swin Transformer | 99.25 | 100.00 | 100.00 | 99.75 | 99.63 | |
ResNet | 99.88 | 99.88 | 97.88 | 99.17 | 98.81 | |
9号 | Vision Transformer | 98.88 | 100.00 | 100.00 | 99.62 | 99.44 |
Swin Transformer | 99.88 | 99.88 | 99.25 | 99.67 | 99.50 | |
ResNet | 100.00 | 100.00 | 97.50 | 99.62 | 99.44 | |
10号 | Vision Transformer | 97.50 | 100.00 | 100.00 | 99.17 | 98.75 |
Swin Transformer | 99.50 | 100.00 | 100.00 | 99.75 | 99.63 | |
ResNet | 100.00 | 100.00 | 99.38 | 99.79 | 99.69 | |
11号 | Vision Transformer | 99.25 | 100.00 | 100.00 | 99.83 | 99.75 |
Swin Transformer | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
ResNet | 99.50 | 100.00 | 98.00 | 99.17 | 98.75 | |
16号 | Vision Transformer | 95.13 | 100.00 | 100.00 | 98.37 | 97.56 |
Swin Transformer | 100.00 | 99.88 | 100.00 | 99.96 | 99.94 | |
ResNet | 100.00 | 100.00 | 93.88 | 97.96 | 96.94 | |
18号 | Vision Transformer | 97.13 | 100.00 | 99.88 | 99.00 | 98.50 |
Swin Transformer | 98.63 | 100.00 | 99.63 | 99.42 | 99.13 |
[1] | KIM J W, KIM D J, HWANG B J. Characterization of Arctic sea ice thickness using high-resolution spaceborne polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 13-22. |
[2] | HOSHINO S, TATEYAMA K, IZUMIYAMA K. Classification of ice in Lützow-Holm Bay, East Antarctica, using data from ASCAT and AMSR2[J]. Remote Sensing, 2020, 12(19):3179. |
[3] | 张晰. 极化SAR渤海海冰厚度探测研究[D]. 青岛: 中国海洋大学, 2011. |
ZHANG X. Research on sea ice thickness detection by polarimetric SAR in Bohai Sea[D]. Qingdao: Ocean University of China, 2011. | |
[4] | FARRELL S L, DUNCAN K, BUCKLEY E M, et al. Mapping sea ice surface topography in high fidelity with ICESat-2[J]. Geophysical Research Letters, 2020, 47(21): e2020GL090708. |
[5] | CAO X W, LU P, LEI R B, et al. Physical and optical characteristics of sea ice in the Pacific Arctic Sector during the summer of 2018[J]. Acta Oceanologica Sinica, 2020, 39(9): 25-37. |
[6] | DIERKING W, LANG O, BUSCHE T. Sea ice local surface topography from single-pass satellite InSAR measurements: A feasibility study[J]. The Cryosphere, 2017, 11(4): 1967-1985. |
[7] | RHEINLAENDER J W, DAVY R, ÓLASON E, et al. Driving mechanisms of an extreme winter sea ice breakup event in the Beaufort Sea[J]. Geophysical Research Letters, 2022, 49(12): e2022GL099024. |
[8] | 刘泉宏, 张韧, 汪杨骏, 等. 深度学习方法在北极海冰预报中的应用[J]. 大气科学学报, 2022, 45(1):14-21. |
LIU Q H, ZHANG R, WANG Y J, et al. Application of deep learning methods to Arctic Sea ice prediction[J]. Transactions of Atmospheric Sciences, 2022, 45(1): 14-21. | |
[9] | 刘启明, 杨树国, 赵莉. 基于深度卷积神经网络的海洋多目标涡旋检测方法[J]. 青岛科技大学学报:自然科学版, 2022, 43(4):120-126. |
LIU Q M, YANG S G, ZHAO L. Ocean multi-eddy detection method based on deep convolution neural network[J]. Journal of Qingdao University of Science and Technology: Natural Science Edition, 2022, 43(4): 120-126. | |
[10] | 崔艳荣. 卷积神经网络在渤海海冰卫星遥感中的应用[D]. 上海: 上海海洋大学, 2020. |
CUI Y R. Application of convolutional neural network in remote sensing of sea ice satellites in the Bohai Sea[D]. Shanghai: Shanghai Ocean University, 2020. | |
[11] | KHALEGHIAN S, ULLAH H, KRAEMER T, et al. Deep semisupervised teacher-student model based on label propagation for sea ice classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10761-10772. |
[12] | 王芳. 基于Sentinel-1极化数据北冰洋海冰分类研究[D]. 北京: 中国地质大学, 2021. |
WANG F. Arctic sea ice classification based on Sentinel-1 polarization data[D]. Beijing: China University of Geos-ciences, 2021. | |
[13] | HAN Y L, GAO Y, ZHANG Y, et al. Hyperspectral sea ice image classification based on the spectral-spatial-joint feature with deep learning[J]. Remote Sensing, 2019, 11(18): 2170. |
[14] | 张赛, 樊博文, 禹定峰, 等. 基于多尺度融合网络的辽东湾海冰提取方法研究[J]. 海洋测绘, 2023, 43(1):68-72. |
ZHANG S, FAN B W, YU D F, et al. Research on sea ice extraction method of Liaodong Bay based on multi-scale fusion network[J]. Hydrographic Surveying and Charting, 2023, 43(1): 68-72. | |
[15] | 李金鑫. 基于卷积神经网络的SAR图像分类[D]. 长春: 吉林大学, 2018. |
LI J X. SAR image classification based on convolutional neural network[D]. Changchun: Jilin University, 2018. | |
[16] | HAN Y L, WEI C, ZHOU R Y, et al. Combining 3D-CNN and squeeze-and-excitation networks for remote sensing sea ice image classification[J]. Mathematical Problems in Engineering, 2020: 8065396. |
[17] | HAN Y L, LIU Y K, HONG Z H, et al. Sea ice image classification based on heterogeneous data fusion and deep learning[J]. Remote Sensing, 2021, 13(4): 592. |
[18] | PETROU Z I, TIAN Y L. Prediction of sea ice motion with convolutional long short-term memory networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6865-6876. |
[19] | 焦艳, 黄菲, 高松, 等. 基于长短时记忆神经网络的辽东湾海冰延伸期预报方法研究[J]. 中国海洋大学学报:自然科学版, 2020, 50(6):1-11. |
JIAO Y, HUANG F, GAO S, et al. Research on extended-range forecast model of sea ice in the Liaodong Bay based on long short term memory network[J]. Periodical of Ocean University of China, 2020, 50(6): 1-11. | |
[20] | LIU Q H, ZHANG R, WANG Y J, et al. Daily prediction of the Arctic sea ice concentration using reanalysis data based on a convolutional LSTM network[J]. Journal of Marine Science and Engineering, 2021, 9(3): 330. |
[21] | ZHENG Q Y, LI W, SHAO Q, et al. A mid- and long-term Arctic sea ice concentration prediction model based on deep learning technology[J]. Remote Sensing, 2022, 14(12): 2889. |
[22] | WEI J F, HANG R L, LUO J J. Prediction of Pan-Arctic sea ice using attention-based LSTM neural networks[J]. Frontiers in Marine Science, 2022, 9: 860403. |
[23] | 李明慧. 基于深度学习的SAR影像海冰分类研究[D]. 上海: 上海海洋大学, 2019. |
LI M H. Sea ice classification based on deep learning with SAR imagery[D]. Shanghai: Shanghai Ocean University, 2019. | |
[24] |
葛梦滢, 高稳, 祝敏, 等. 基于SE-ConvLSTM的时空特征融合SAR图像海冰分类[J]. 遥感技术与应用, 2023, 38(6):1306-1316.
DOI |
GE M Y, GAO W, ZHU M, et al. Sea ice classification of SAR images based on SE-ConvLSTM spatial-temporal feature fusion[J]. Remote Sensing Technology and Application, 2023, 38(6): 1306-1316. | |
[25] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017. |
[26] | MU B, LUO X D, YUAN S J, et al. IceTFT v1.0.0: Interpretable long-term prediction of Arctic sea ice extent with deep learning[J]. Geoscientific Model Development, 2023, 16(16): 4677-4697. |
[27] | 刘剑锋, 郜利康, 赫晓慧, 等. 结合卷积网络与注意力机制的冰凌提取算法[J]. 遥感信息, 2023, 38(4):49-56. |
LIU J F, GAO L K, HE X H, et al. Combining CNN with self-attention mechanism for ice extraction[J]. Remote Sensing Information, 2023, 38(4): 49-56. | |
[28] | SUDAKOW I, ASARI V K, LIU R X, et al. MeltPondNet: A swin transformer U-Net for detection of melt ponds on Arctic sea ice[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 8776-8784. |
[29] | ZHU Q, GUO H D, ZHANG L, et al. GLA-STDeepLab: SAR enhancing glacier and ice shelf front detection using Swin-TransDeepLab with global-local attention[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5218113. |
[30] | LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: Hierarchical vision Transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada. IEEE, 2021: 9992-10002. |
[31] | SHI W T, XU J, GAO P. SSformer: A lightweight transformer for semantic segmentation[C]// IEEE 24th International Workshop on Multimedia Signal Processing (MMSP). Shanghai, China. IEEE, 2022. |
[32] | DAN Y P, ZHU Z N, JIN W S, et al. S-Swin Transformer: Simplified Swin Transformer model for offline handwritten Chinese character recognition[J]. PeerJ Computer Science, 2022, 8: e1093. |
[33] | ZHU Y P, LU S. Swin-VoxelMorph: A symmetric unsuper-vised learning model for deformable medical image registration using Swin Transformer[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI, 2022, 13436:78-87. |
[34] | 于皓, 田忠翔, 李春花. 基于Sentinel-1双极化数据的北极海域假彩色图像合成方法[J]. 海洋预报, 2022, 39(5):60-69. |
YU H, TIAN Z X, LI C H. A method of synthesizing RGB pseudo color images based on Sentinel-1 dual-polarization data in the Arctic[J]. Marine Forecasts, 2022, 39(5): 60-69. | |
[35] | ZHANG J D, ZHANG W Y, HU Y X, et al. An improved sea ice classification algorithm with Gaofen-3 dual-polarization SAR data based on deep convolutional neural networks[J]. Remote Sensing, 2022, 14(4): 906. |
[36] | 张珂, 冯晓晗, 郭玉荣, 等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报, 2021, 26(10):2305-2325. |
ZHANG K, FENG X H, GUO Y R, et al. Overview of deep convolutional neural net-works for image classification[J]. Journal of lmage and Graphics, 2021, 26(10): 2305-2325. | |
[37] |
刘文婷, 卢新明. 基于计算机视觉的Transformer研究进展[J]. 计算机工程与应用, 2022, 58(6):1-16.
DOI |
LIU W T, LU X M. Research progress of Transformer based on computer vision[J]. Computer Engineering and Applications, 2022, 58(6): 1-16.
DOI |
[1] | CHEN Jianheng, XU Dongfeng, YAO Zhixiong. Prediction of sea level changes along the coast of China using machine learning models [J]. Journal of Marine Sciences, 2024, 42(3): 108-118. |
[2] | WANG Zhihong, QU Ke, YANG Yuanping, WANG Xu, GAO Rongze. Application of convolutional neural network method in evolution of tidal bore hydrodynamic characteristics [J]. Journal of Marine Sciences, 2024, 42(3): 131-141. |
[3] | XU Guangjun, SHI Yucheng, YU Yang, XIE Huarong, XIE Wenhong, LIU Jingyuan, LIN Xiayan, LIU Yu, DONG Changming. Recent developments in AI-based oceanic eddy identification [J]. Journal of Marine Sciences, 2024, 42(3): 38-50. |
[4] | ZHENG Mengke, FANG Wei, ZHANG Xiaozhi. Review of application of deep learning in Indian Ocean Dipole prediction [J]. Journal of Marine Sciences, 2024, 42(3): 51-63. |
[5] | DI Ya’nan, ZHAO Ruoxuan, XU Jianzhou. Deep learning-based histopathological analysis and its potential application in marine monitoring: A review and case study [J]. Journal of Marine Sciences, 2024, 42(3): 64-74. |
[6] | NI Hanyue, DONG Changming, LIU Zhenbo, YANG Jingsong, LI Xiaohui, REN Lin. Calibration of Sentinel-1 SAR retrieved wind speed based on BP neural network model [J]. Journal of Marine Sciences, 2024, 42(3): 75-87. |
[7] | ZHANG Yongyong. Inversion of shallow water depth in Hengsha based on GF5-AHSI remote sensing data [J]. Journal of Marine Sciences, 2022, 40(2): 93-101. |
[8] | FANG Yue-wei, TANG You-min, LI Jun-de, LIU Ting. Several statistical models to predict tropical Indian Ocean Sea Surface Temperature Anomaly [J]. Journal of Marine Sciences, 2018, 36(1): 1-15. |
[9] | HU Hao, XU Dong, LONG Jiang-ping, ZHOU Meng-jia, TANG Bo, JIN Lu. Quantitative analysis of BP neural network on the relationships between ∑REE content and impact factors in Beibu Gulf [J]. Journal of Marine Sciences, 2016, 34(1): 18-26. |
[10] | Ll Lu-feng, LIU Xiang-nan, Ll Zhi-bo, MI Yong-hong. Inversion models of chlorophyll α mass concentration in Pearl River Estuary using SAR image [J]. Journal of Marine Sciences, 2012, 30(2): 66-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||