[1] BRASSELL S C, EGLINTON G, MARLOWE I T, et al. Molecular stratigraphy: A new tool for climatic assessment[J]. Nature,1986,320:129-133,doi:10.1038/320129a0. [2] PRAHL F G, WAKEHAM S G. Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment[J]. Nature,1987,330:367-369. [3] MÜLLER P J, KIRST G, RUHLAND G, et al. Calibration of the alkenone paleotemperature index Uk37 based on core-tops from the eastern South Atlantic and the global ocean (60°S-60°N)[J]. Geochimica et Cosmochimica Acta,1998,62(10):1 757-1 772. [4] SCHOUTEN S, HOPMANS E C, SCHEFU E, et al. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures[J]. Earth and Planetary Science Letters,2002,204(1):265-274. [5] WUCHTER C, SCHOUTEN S, COOLEN M J L, et al. Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry[J]. Paleoceanography,2004,19(4):doi:10.1029/2004PA001041. [6] ABELMANN A, BRATHAUER U, GERSONDE R, et al. Radiolarian-based transfer function for the estimation of sea surface temperatures in the Southern Ocean (Atlantic Sector)[J]. Paleoceanography,1999,14(3):410-421. [7] MIX A C, MOREY A E, PISIAS N G, et al. Foraminiferal faunal estimates of paleotemperature: Circumventing the no-analog problem yields cool ice age tropics[J]. Paleoceanography,1999,14(3):350-359. [8] NÜRNBERG D, MÜLLER A, SCHNEIDER R R. Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: A comparison to sea surface temperature estimates from Uk37', oxygen isotopes, and foraminiferal transfer function[J]. Paleoceanography,2000,15(1):124-134. [9] PRAHL F G, De LANGE G J, LYLE M, et al. Post-depositional stability of long-chain alkenones under contrasting redox conditions[J]. Nature,1989,341:434-437. [10] SIKES E L, FARRINGTON J W, KEIGWIN L D. Use of alkenone unsaturation ratios (Uk37) to determine past sea surface temperature: Core top SST calibrations and methodology considerations[J]. Earth and Planetary Science Letters,1991,104(1):36-47. [11] KENNEDY J A, BRASSELL S C. Molecular stratigraphy of the Santa Barbara Basin: Comparison with historical records of annual climate change[J]. Organic Geochemistry,1992,19(1):235-244. [12] SIKES E L, KEIGWIN L D. Equaterial Atlantic sea surface temperature for the last 30 kyr: A comparison of Uk37, δ18O and foramineriferal assemblage temperature estimates[J]. Paleoceanography,1994,9(1):31-45. [13] PELEJERO C, CALVO E. The upper end of the Uk37 temperature calibration revisited[J]. Geochemistry, Geophysics, Geosystems,2003,4(2):doi:10.1029/2002GC000431. [14] SCHNEIDER R. Alkenone temperature and carbon isotope records: Temporal resolution, offsets, and regionality[J]. Geochemistry, Geophysics, Geosystems,2001,2(1):doi:10.1029/2000GC000060. [15] PELEJERO C, GRIMALT J O. The correlation between the Uk37 index and sea surface temperature in the warm boundary: the South China Sea[J]. Geochimica et Cosmochimica Acta,1997,61(22):4 789-4 797. [16] HU Jian-fang, Peng Ping-an. A quantitative method applicable to high resolution molecular stratigraphy[J]. Analysis Chemistry,2000,28(3):283-287. 胡建芳,彭平安.一种适用于高分辨分子地层学研究的有机质分离及定量方法[J].分析化学,2000,28(3):283-287. [17] BRASSELL S C. Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene[M]//Organic Geochemistry. Springer US,1993:699-738. [18] MIX A C, BARD E, EGLINTON G, et al. Alkenones and multiproxy strategies in paleoceanographic studies[J]. Geochemistry, Geophysics, Geosystems,2000,1(11):doi:10.1029/2000GC000056. [19] PRAHL F G, MUEHLHAUSEN L A, ZAHNLE D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions[J]. Geochimica et Cosmochimica Acta,1988,52(9):2 303-2 310. [20] BROERSE A T C, TYRRELL T, YOUNG J R, et al. The cause of bright waters in the Bering Sea in winter[J]. Continental Shelf Research,2003,23(16):1 579-1 596. [21] LIU Chan-lian,SHAO Lei,CHEN Rong-hua, et al. Distribution of calcareous nannoplankton in surface sediments of the northeastern parts of the South China Sea[J]. Marine Geology & Quaternary Geology,2001,21(3):24-28. 刘传联,邵磊,陈荣华,等.南海东北部表层沉积中钙质超微化石的分布[J].海洋地质与第四纪地质,2001,21(3):24-28. [22] CHEN Fang, HUANG Yong-xiang, DUAN Wei-wu, et al. Calcareous nannoplankton in surface sediments in the west of the South China Sea[J]. Marine Geology & Quaternary Geology,2002,22(3):35-39. 陈芳,黄永样,段威武,等.南海西部表层沉积中的钙质超微化石[J].海洋地质与第四纪地质,2002,22(3):35-39. [23] PELEJERO C, GRIMALT J O, HEILIG S, et al. High resolution Uk37'temperature reconstructions in the South China Sea over the last 220 kyrs[J]. Paleoceanography,1999,14(2):224-231. [24] VOLKMAN J K, BARRETT S M, BLACKBURN S I, et al. Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate[J]. Geochimica et Cosmochimica Acta,1995,59(3):513-520. [25] SAWADA K, HANDA N, SHIRAIWA Y, et al. Long-chain alkenones and alkyl alkenoates in the coastal and pelagic sediments of the northwest North Pacific, with special reference to the reconstruction of Emiliania huxleyi and Gephyrocapsa oceanic ratios[J]. Organic Geochemistry,1996,24(8):751-764. [26] MARLOWE I T, BRASSELL S C, EGLINTON G, et al. Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments[J]. Chemical Geology,1990,88(3):349-375. [27] CHEN L Y L, CHEN H Y, CHUNG C W. Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2007,54(14):1 617-1 633. [28] CHEN L Y L. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers,2005,52(2):319-340. |