Journal of Marine Sciences ›› 2025, Vol. 43 ›› Issue (1): 34-46.DOI: 10.3969/j.issn.1001-909X.2025.01.004
Previous Articles Next Articles
HE Xinyi1,2,3(), LIU Qian2,4, LI Xiaohu1,2,3,*(
), LI Zhenggang2,3, WANG Hao2,3, ZHU Zhimin2,3, LI Huaiming2,3
Received:
2024-04-09
Revised:
2024-05-24
Online:
2025-03-15
Published:
2025-05-30
Contact:
LI Xiaohu
CLC Number:
HE Xinyi, LIU Qian, LI Xiaohu, LI Zhenggang, WANG Hao, ZHU Zhimin, LI Huaiming. Microbial community structure and function in deep-sea polymetallic nodules and surrounding sediments[J]. Journal of Marine Sciences, 2025, 43(1): 34-46.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2025.01.004
Fig.2 Main morphologies of nodule samples and the appearance of corresponding thin sections (a-d: Morphologies and corresponding thin sections of nodule samples collected at M2-BC78 site from the western Pacific; e-h: Morphologies and corresponding thin sections of nodule samples collected at KW1-BC05 site from the eastern Pacific.)
项目 | 西太平洋M2-MC02站 | 东太平洋KW1-MC04站 | |||
---|---|---|---|---|---|
结核 (WNAt) | 沉积物 (WSA) | 结核 (ENBt) | 沉积物 (ESB) | ||
序列数/条 | 10 319 | 9 535 | 11 553 | 6 862 | |
OTU数/个 | 960 | 1 169 | 893 | 1 065 | |
ACE | 1 024 | 1 490 | 1 201 | 1 512 | |
Shannon指数 | 8.38 | 8.45 | 6.26 | 7.45 | |
覆盖率/% | 99 | 99 | 99 | 99 |
Tab.1 Bacterial sequence information and diversity index
项目 | 西太平洋M2-MC02站 | 东太平洋KW1-MC04站 | |||
---|---|---|---|---|---|
结核 (WNAt) | 沉积物 (WSA) | 结核 (ENBt) | 沉积物 (ESB) | ||
序列数/条 | 10 319 | 9 535 | 11 553 | 6 862 | |
OTU数/个 | 960 | 1 169 | 893 | 1 065 | |
ACE | 1 024 | 1 490 | 1 201 | 1 512 | |
Shannon指数 | 8.38 | 8.45 | 6.26 | 7.45 | |
覆盖率/% | 99 | 99 | 99 | 99 |
Fig.5 Bacterial community composition in nodules and sediments of the eastern and western Pacific Ocean (“unassigned” represents a collection of sequences that cannot be definitively classified into known genera, “uncultured” represents a collection of genera that cannot be cultivated from the environment using traditional cultivation methods.)
Fig.6 Relative abundance average clustering heatmap at the genus level (top 30) (The color in the figure signifies the degree of enrichment of the genus within the sample, with deeper red hues indicating a higher level of enrichment. “unassigned” represents a collection of sequences that cannot be definitively classified into known genera, “uncultured” represents a collection of genera that cannot be cultivated from the environment using traditional cultivation methods.)
Fig.8 Microsphere structures in the nodules and corresponding energy dispersive spectroscopy results (a-b: Microsphere structures and corresponding EDS results in the western Pacific nodules; c-d: Microsphere structures and corresponding EDS results in the eastern Pacific nodules.)
[1] | 赵昌会, 叶德赞, 魏文铃. 深海微生物的研究进展[J]. 微生物学通报, 2006, 33(3):142-146. |
ZHAO C H, YE D Z, WEI W L. Research on deep-sea microbiology[J]. Microbiology, 2006, 33(3): 142-146. | |
[2] | 王风平, 周悦恒, 张新旭, 等. 深海微生物多样性[J]. 生物多样性, 2013, 21(4):446-456. |
WANG F P, ZHOU Y H, ZHANG X X, et al. Biodiversity of deep-sea microorganisms[J]. Biodiversity Science, 2013, 21(4): 446-456. | |
[3] | 井晓欢, 王杏, 熊尚凌, 等. 东太平洋多金属结核区两个站位深海沉积物细菌多样性[J]. 微生物学报, 2016, 56(9):1434-1449. |
JING X H, WANG X, XIONG S L, et al. Bacterial diversity in deep-sea sediments from two stations in the east Pacific polymetallic nodule province[J]. Acta Microbiologica Sinica, 2016, 56(9): 1434-1449. | |
[4] | PARKES R J, CRAGG B A, BALE S J, et al. Deep bacterial biosphere in Pacific Ocean sediments[J]. Nature, 1994, 371(6496): 410-413. |
[5] | REYKHARD L Y, SHULGA N A. Fe-Mn nodule morphotypes from the NE Clarion-Clipperton Fracture zone, Pacific Ocean: Comparison of mineralogy, geochemistry and genesis[J]. Ore Geology Reviews, 2019, 110: 102933. |
[6] | HEIN J R, KOSCHINSKY A, KUHN T. Deep-ocean poly-metallic nodules as a resource for critical materials[J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169. |
[7] |
任江波, 邓义楠, 赖佩欣, 等. 太平洋调查区多金属结核的地球化学特征和成因[J]. 地学前缘, 2021, 28(2):412-425.
DOI |
REN J B, DENG Y N, LAI P X, et al. Geochemical characteristics and genesis of the polymetallic nodules in the Pacific survey area[J]. Earth Science Frontiers, 2021, 28(2): 412-425.
DOI |
|
[8] | HALBACH P, SCHERHAG C, HEBISCH U, et al. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean[J]. Mineralium Deposita, 1981, 16(1): 59-84. |
[9] | JIANG X D, GONG J L, REN J B, et al. An interdependent relationship between microbial ecosystems and ferromanganese nodules from the Western Pacific Ocean[J]. Sedimentary Geology, 2020, 398: 105588. |
[10] | 谢先德, 张刚生, 贾建业. 微生物-矿物相互作用之环境意义的研究[J]. 岩石矿物学杂志, 2001, 20(4):382-386. |
XIE X D, ZHANG G S, JIA J Y. Environmental signifi-cance of the interaction between minerals and microbes[J]. Acta Petrologica et Mineralogica, 2001, 20(4): 382-386. | |
[11] | 姜明玉, 胡艺豪, 于心科, 等. 大洋铁锰结核的微生物成矿过程及其研究进展[J]. 海洋科学, 2020, 44(7):156-164. |
JIANG M Y, HU Y H, YU X K, et al. Advances in research on biological mineralization process of marine ferromanganese nodules[J]. Marine Sciences, 2020, 44(7): 156-164. | |
[12] | HOFFMANN T D, REEKSTING B J, GEBHARD S. Bacteria-induced mineral precipitation: A mechanistic review[J]. Microbiology, 2021, 167(4): 001049. |
[13] | 杜灵通, 吕新彪. 大洋多金属结核研究概况[J]. 地质与资源, 2003, 12(3):185-187. |
DU L T, LÜ X B. A review of the study on polymetallic nodules in ocean[J]. Journal of Precious Metallic Geology, 2003, 12(3): 185-187. | |
[14] | HEIN J R, MIZELL K, KOSCHINSKY A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources[J]. Ore Geology Reviews, 2013, 51: 1-14. |
[15] | XU M X, WANG P, WANG F P, et al. Microbial diversity at a deep-sea station of the Pacific nodule province[J]. Biodiversity & Conservation, 2005, 14: 3363-3380. |
[16] |
ZHANG D C, LI X D, WU Y H, et al. Microbe-driven elemental cycling enables microbial adaptation to deep-sea ferromanganese nodule sediment fields[J]. Microbiome, 2023, 11(1): 160.
DOI PMID |
[17] | 叶光斌, 王风平, 肖湘. 东太平洋中国多金属结核区锰结核样品中微生物群落结构的研究[J]. 台湾海峡, 2010, 29(2):218-227. |
YE G B, WANG F P, XIAO X. Study of the microbial community structure of manganese nodule samples from China polymental nodule province in the Eastern Pacific Ocean[J]. Journal of Oceanography in Taiwan Strait, 2010, 29(2): 218-227. | |
[18] | SHIRAISHI F, MITSUNOBU S, SUZUKI K, et al. Dense microbial community on a ferromanganese nodule from the ultra-oligotrophic South Pacific Gyre: Implications for biogeochemical cycles[J]. Earth and Planetary Science Letters, 2016, 447: 10-20. |
[19] | NOVIKOV G V, MEL’NIKOV M E, BOGDANOVA O Y, et al. Nature of co-bearing ferromanganese crusts of the Magellan Seamounts (Pacific Ocean): Communication 1. Geology, mineralogy, and geochemistry[J]. Lithology and Mineral Resources, 2014, 49(1): 6197. |
[20] | SHAO Q W, SUN D, FANG C, et al. Microbial food webs share similar biogeographic patterns and driving mechanisms with depths in oligotrophic tropical western Pacific Ocean[J]. Frontiers in Microbiology, 2023, 14: 1098264. |
[21] | MACDONALD K C, FOX P J, ALEXANDER R T, et al. Volcanic growth faults and the origin of Pacific abyssal hills[J]. Nature, 1996, 380(6570): 125-129. |
[22] | SINGER E, BUSHNELL B, COLEMAN-DERR D, et al. High-resolution phylogenetic microbial community profiling[J]. The ISME Journal, 2016, 10(8): 2020-2032. |
[23] |
EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10: 996-998.
DOI PMID |
[24] |
QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41: 590-596.
DOI PMID |
[25] | YANG K H, DONG Y H, LI Z G, et al. Geochemistry of buried polymetallic nodules from the eastern Pacific Ocean: Implication for the depth-controlled alteration process[J]. Marine Geology, 2024, 467: 107190. |
[26] | JIANG X D, ZHAO X, CHOU Y M, et al. Characterization and quantification of magnetofossils within abyssal manganese nodules from the western Pacific Ocean and implications for nodule formation[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(3): e2019GC008811. |
[27] | BLÖTHE M, WEGORZEWSKI A, MÜLLER C, et al. Manganese-cycling microbial communities inside deep-sea manganese nodules[J]. Environmental Science & Technology, 2015, 49(13): 7692-7700. |
[28] | SHULSE C N, MAILLOT B, SMITH C R, et al. Polymetallic nodules, sediments, and deep waters in the equatorial North Pacific exhibit highly diverse and distinct bacterial, archaeal, and microeukaryotic communities[J]. Microbiology Open, 2017, 6(2): e00428. |
[29] | NEETHU C S, SARAVANAKUMAR C, PURVAJA R, et al. Arsenic resistance and horizontal gene transfer are associated with carbon and nitrogen enrichment in bacteria[J]. Environmental Pollution, 2022, 311: 119937. |
[30] |
BEN SALEM F, BEN SAID O, CRAVO-LAUREAU C, et al. Bacterial community assemblages in sediments under high anthropogenic pressure at Ichkeul Lake/Bizerte Lagoon hydrological system, Tunisia[J]. Environmental Pollution, 2019, 252: 644-656.
DOI PMID |
[31] | WEI X, OUYANG K H, LONG T H, et al. Dynamic variations in rumen fermentation characteristics and bacterial community composition during in vitro fermentation[J]. Fermentation, 2022, 8(6): 276. |
[32] | MCKEE L S, LA ROSA S L, WESTERENG B, et al. Polysaccharide degradation by the bacteroidetes: Mechanisms and nomenclature[J]. Environmental Microbiology Reports, 2021, 13(5): 559-581. |
[33] | MUNOZ R, TEELING H, AMANN R, et al. Ancestry and adaptive radiation of Bacteroidetes as assessed by comparative genomics[J]. Systematic and Applied Microbiology, 2020, 43(2): 126065. |
[34] |
KLIMEK D, HEROLD M, CALUSINSKA M. Comparative genomic analysis of Planctomycetota potential for polysaccharide degradation identifies biotechnologically relevant microbes[J]. BMC Genomics, 2024, 25(1): 523.
DOI PMID |
[35] | BARKA E A, VATSA P, SANCHEZ L, et al. Taxonomy, physiology, and natural products of Actinobacteria[J]. Microbiology and Molecular Biology Reviews, 2015, 80(1): 1-43. |
[36] | RANJANI A, DHANASEKARAN D, GOPINATH P M. An introduction to Actinobacteria[M] //DHANASEKARAN D, JIANGY. Actinobacteria-basics and biotechnological applications. [S.l.]: InTech, 2016. |
[37] | ABRAHAM W R, MACEDO A J, LÜNSDORF H, et al. Arcicella[M]//Bergey’s manual of systematics of archaea and bacteria. Hoboken, NJ: Wiley, 2015: 1-5. |
[38] | CHEN W M, YANG S H, YOUNG C C, et al. Arcicella rigui sp. nov., isolated from water of a wetland, and emended descriptions of the genus Arcicella, Arcicella aquatica, Arcicella rosea and Arcicella aurantiaca[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63: 134-140. |
[39] | BACOSA H P, ERDNER D L, ROSENHEIM B E, et al. Hydrocarbon degradation and response of seafloor sediment bacterial community in the northern Gulf of Mexico to light Louisiana sweet crude oil[J]. The ISME Journal, 2018, 12(10): 2532-2543. |
[40] |
TULLY B J, HEIDELBERG J F. Microbial communities associated with ferromanganese nodules and the surrounding sediments[J]. Frontiers in Microbiology, 2013, 4: 161.
DOI PMID |
[41] | WU Y H, LIAO L, WANG C S, et al. A comparison of microbial communities in deep-sea polymetallic nodules and the surrounding sediments in the Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2013, 79: 40-49. |
[42] | MOLARI M, JANSSEN F, VONNAHME T R, et al. The contribution of microbial communities in polymetallic nodules to the diversity of the deep-sea microbiome of the Peru Basin (4130-4198 m depth)[J]. Biogeosciences, 2020, 17(12): 3203-3222. |
[43] | ZHAO X, LIU B F, WANG X H, et al. Single molecule sequencing reveals response of manganese-oxidizing microbiome to different biofilter media in drinking water systems[J]. Water Research, 2020, 171: 115424. |
[44] | GARCÍA M T, MELLADO E, OSTOS J C, et al. Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54: 1723-1728. |
[45] | QIU X, YU L B, CAO X R, et al. Halomonas sedimenti sp. nov., a halotolerant bacterium isolated from deep-sea sediment of the southwest Indian Ocean[J]. Current Microbiology, 2021, 78(4): 1662-1669. |
[46] |
NOIRUNGSEE N, HACKBUSCH S, VIAMONTE J, et al. Influence of oil, dispersant, and pressure on microbial communities from the Gulf of Mexico[J]. Scientific Reports, 2020, 10(1): 7079.
DOI PMID |
[47] | SCHNEIKER S, DOS SANTOS V A P M, BARTELS D, et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis[J]. Nature Biotechnology, 2006, 24(8): 997-1004. |
[48] | ETTWIG K F, BUTLER M K, LE PASLIER D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543-548. |
[49] |
LAURO F M, MCDOUGALD D, THOMAS T, et al. The genomic basis of trophic strategy in marine bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(37): 15527-15533.
DOI PMID |
[50] | CORAM N J, RAWLINGS D E. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 degrees C[J]. Applied and Environmental Microbiology, 2002, 68(2): 838-845. |
[51] | SWEETMAN A K, SMITH C R, SHULSE C N, et al. Key role of bacteria in the short-term cycling of carbon at the abyssal seafloor in a low particulate organic carbon flux region of the eastern Pacific Ocean[J]. Limnology and Oceanography, 2019, 64(2): 694-713. |
[52] | ZHANG L, HUANG X Y, ZHOU J Z, et al. Active predation, phylogenetic diversity, and global prevalence of myxobacteria in wastewater treatment plants[J]. The ISME Journal, 2023, 17(5): 671-681. |
[53] |
SHULGA N, ABRAMOV S, KLYUKINA A, et al. Fast-growing Arctic Fe-Mn deposits from the Kara Sea as the refuges for cosmopolitan marine microorganisms[J]. Scientific Reports, 2022, 12(1): 21967.
DOI PMID |
[54] | SUN X, KOP L F M, LAU M C Y, et al. Uncultured Nitrospina-like species are major nitrite oxidizing bacteria in oxygen minimum zones[J]. The ISME Journal, 2019, 13(10): 2391-2402. |
[55] | GAO Y H, WU J J, ZHANG D, et al. The impact of alloying element Cu on corrosion and biofilms of 316L stainless steel exposed to seawater[J]. Environmental Science and Pollution Research International, 2024, 31(12): 18842-18855. |
[56] | ESPINOSA E, MARCO-NOALES E, GÓMEZ D, et al. Taxonomic study of Marinomonas strains isolated from the seagrass Posidonia oceanica, with descriptions of Marinomonas balearica sp. nov. and Marinomonas pollencensis sp. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60: 93-98. |
[57] |
BOEUF D, EDWARDS B R, EPPLEY J M, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(24): 11824-11832.
DOI PMID |
[58] | HOLLINGSWORTH A L, JONES D O B, YOUNG C R. Spatial variability of abyssal nitrifying microbes in the north-eastern Clarion-Clipperton Zone[J]. Frontiers in Marine Science, 2021, 8: 663420. |
[59] |
ZHANG L F, FU G K, ZHANG Z. Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioresource Technology, 2019, 272: 105-113.
DOI PMID |
[60] | SOROKIN D Y, RAINEY F A, WEBB R I, et al. Sulfitobacter[M]//Bergey’s manual of systematics of archaea and bacteria. Hoboken, NJ: Wiley, 1996: 1-8. |
[61] |
SWAN B K, MARTINEZ-GARCIA M, PRESTON C M, et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean[J]. Science, 2011, 333(6047): 1296-1300.
DOI PMID |
[62] | QIU D R, WEI H H, TU Q C, et al. Combined genomics and experimental analyses of respiratory characteristics of Shewanella putrefaciens W3-18-1[J]. Applied and Environ-mental Microbiology, 2013, 79(17): 5250-5257. |
[63] | VANDIEKEN V, PESTER M, FINKE N, et al. Three manganese oxide-rich marine sediments harbor similar commu-nities of acetate-oxidizing manganese-reducing bacteria[J]. The ISME Journal, 2012, 6(11): 2078-2090. |
[64] | LÜ Q, ZHANG B G, XING X, et al. Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation[J]. Journal of Hazardous Materials, 2018, 347: 141-149. |
[65] | BRÄUER S L, ADAMS C, KRANZLER K, et al. Culturable Rhodobacter and Shewanella species are abundant in estuarine turbidity maxima of the Columbia River[J]. Environmental Microbiology, 2011, 13(3): 589-603. |
[66] | MATSUNAGA T, SAKAGUCHI T, TADAKORO F. Magnetite formation by a magnetic bacterium capable of growing aerobically[J]. Applied Microbiology and Biotechnology, 1991, 35(5): 651-655. |
[67] | CHOI A, YANG S J, RHEE K H, et al. Lentisphaera marina sp. nov., and emended description of the genus Lentisphaera[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63: 1540-1544. |
[68] | TEMPLETON A S, STAUDIGEL H, TEBO B M. Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi seamount[J]. Geomicrobiology Journal, 2005, 22(3/4): 127-139. |
[69] | HANDLEY K M, LLOYD J R. Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species[J]. Frontiers in Microbiology, 2013, 4: 136. |
[70] | LIN X Z, GAO A G, CHEN H W. Isolation and phylogenetic analysis of cultivable manganese bacteria in sediments from the Arctic Ocean[J]. Acta Ecologica Sinica, 2008, 28(12): 6364-6370. |
[71] | TEBO B M, BARGAR J R, CLEMENT B G, et al. Biogenic manganese oxides: Properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences, 2004, 32: 287-328. |
[72] | ANDERSON C R, JOHNSON H A, CAPUTO N, et al. Mn(II) oxidation is catalyzed by heme peroxidases in “Aurantimonas manganoxydans” strain SI85-9A1 and Erythrobacter sp. strain SD-21[J]. Applied and Environ-mental Microbiology, 2009, 75(12): 4130-4138. |
[73] | DICK G J, TORPEY J W, BEVERIDGE T J, et al. Direct identification of a bacterial manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species[J]. Applied and Environmental Microbiology, 2008, 74(5): 1527-1534. |
[74] | BROUWERS G J, VIJGENBOOM E, CORSTJENS P L A M, et al. Bacterial Mn2+oxidizing systems and multicopper oxidases: An overview of mechanisms and functions[J]. Geomicrobiology Journal, 2000, 17(1): 1-24. |
[75] |
WOLFAARDT G M, LAWRENCE J R, ROBARTS R D, et al. Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation[J]. Applied and Environmental Microbiology, 1995, 61(1): 152-158.
DOI PMID |
[76] |
WANG X H, MÜLLER W E G. Marine biominerals: Perspectives and challenges for polymetallic nodules and crusts[J]. Trends in Biotechnology, 2009, 27(6): 375-383.
DOI PMID |
[1] | WANG Tianyi, DONG Yanhui, CHU Fengyou, SHI Xuefa, LI Xiaohu, SU Rong, ZHANG Weiyan. Classification and genesis of deep-sea REY-rich sediments in the Pacific Ocean [J]. Journal of Marine Sciences, 2024, 42(1): 23-35. |
[2] | ZHANG Xudong, QIU Zhongfeng, MAO Kefeng, WANG Penghao. Composed structure of mesoscale eddy in the Northwest Pacific Ocean and its influence on acoustic propagation [J]. Journal of Marine Sciences, 2024, 42(1): 58-68. |
[3] | WU Xinran, DONG Yanhui, LI Zhenggang, WANG Hao, ZHANG Weiyan, LI Huaiming, LI Xiaohu, CHU Fengyou. Deep-sea rare earth resource potential in the Eastern Pacific Clarion-Clipperton Fracture Zone: Constraint from sediment geochemistry [J]. Journal of Marine Sciences, 2023, 41(4): 46-56. |
[4] | ZHU Feiyang, LI Huaiming, YAO Pengfei, WANG Xiao, ZHU Jihao, LÜ Shihui, LUO Yi, ZHOU Li’na, LIU Yuwei, TANG Yutong. Application of two-phase leaching method in the study of ferromanganese nodule mineralization [J]. Journal of Marine Sciences, 2023, 41(2): 83-93. |
[5] | XU Yujia, CHEN Changlin, PENG Xudong, LIU Lei, . Analysis of tropical cyclone forecast errors in the northwestern Pacific Ocean [J]. Journal of Marine Sciences, 2021, 39(2): 1-11. |
[6] | WANG Yuanru, CUI Hongpeng, LI Jidong, SUN Dong, WANG Chunsheng, YANG Juan. The structure of bacterial communities and its response to the sedimentary disturbance in the surface sediment of western Pacific polymetallic nodule area [J]. Journal of Marine Sciences, 2021, 39(2): 21-32. |
[7] | LIU Hanren, LIAO Yibo, SHOU Lu, ZENG Jiangning, TANG Yanbin, LIU Qinghe, TAN Yonghua, L Duian, CHENG Jie. Study on diversity of rocky intertidal benthos community in uninhabited islands in Cangnan, Zhejiang [J]. Journal of Marine Sciences, 2021, 39(2): 68-79. |
[8] | JIA Haibo, CHAI Xiaoping, HUANG Bei. Effect of seasonal hypoxia on macrobenthic communities in the Yangtze Estuary from 2016 to 2019 [J]. Journal of Marine Sciences, 2021, 39(2): 80-88. |
[9] | PENG Xin, ZHANG Huawei, TANG Jiu, QIU Jianbiao, CHEN Shaobo. Study on the niche of macrozoobenthic dominant species in the rocky intertidal zone of islands off sourthern Zhejiang [J]. Journal of Marine Sciences, 2021, 39(1): 79-85. |
[10] | ZHOU Yongyuan, YAN Yunwei, XING Xiaogang, CHAI Fei. Assessment of the Pacific Equatorial Intermediate Currents in five ocean models outputs based on the observation calculated from Argo trajectories [J]. Journal of Marine Sciences, 2020, 38(3): 1-9. |
[11] | ZHANG Zhiyi, XU Dong, HAN Xibin, WANG Yanbing, HU Zhilong, GE Qian, YANG Fanlin. High-precision geomorphological characteristics of the seafloor near the Yap-Mariana Trench [J]. Journal of Marine Sciences, 2020, 38(1): 27-41. |
[12] | MENG Fan-sheng, NI Jian-yu, YAO Xu-ying. Biogenic silica content and distribution in deep sea sediments at Marcus-Wake Seamounts area in the western Pacific Ocean [J]. Journal of Marine Sciences, 2019, 37(4): 60-67. |
[13] | MA Zhi-kang, FU Dong-yang, QU Ke, ZHU Feng-qin. Effects of typhoon Tembin on underwater acoustic wave propagation in two kinds of deep sound channel [J]. Journal of Marine Sciences, 2019, 37(3): 40-48. |
[14] | CAO De-kai, REN Xiang-wen, SHI Xue-fa. Genesis and grade control factors of polymetallic nodules in the East Mariana Basin of Pacific [J]. Journal of Marine Sciences, 2017, 35(4): 76-86. |
[15] | YANG Juan, LÜ Jing, ZHANG Rong-xin, SU Xin, SUN Dong. Distribution patterns of zooplankton community structure of the surface water from Southwest Indian Ocean in the summer of 2013 [J]. Journal of Marine Sciences, 2017, 35(3): 54-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||