Journal of Marine Sciences ›› 2025, Vol. 43 ›› Issue (1): 107-121.DOI: 10.3969/j.issn.1001-909X.2025.01.010
Previous Articles Next Articles
ZHU Lunjia1(), QU Ke1,2,3,*(
), WANG Xu1, WANG Chao1, LI Tiankuo1
Received:
2024-02-21
Revised:
2024-04-06
Online:
2025-03-15
Published:
2025-05-30
Contact:
QU Ke
CLC Number:
ZHU Lunjia, QU Ke, WANG Xu, WANG Chao, LI Tiankuo. Numerical simulation of the influence of submerged artificial structures on hydrodynamic characteristics and run-up of solitary waves over shore reefs[J]. Journal of Marine Sciences, 2025, 43(1): 107-121.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2025.01.010
工况 | 入射波高/m | 礁坪 水深/m | 结构物 坡度 | 结构物 峰宽/m | 结构物 峰高/m | 礁前斜坡 坡度 | 工况 | 入射波高/m | 礁坪 水深/m | 结构物 坡度 | 结构物 峰宽/m | 结构物 峰高/m | 礁前斜坡 坡度 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.063 45 | 0.040 | 1∶5 | D4 | 0.105 75 | 0.080 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | |||
A2 | 0.084 60 | 0.040 | 1∶5 | D5 | 0.105 75 | 0.100 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | |||
A3 | 0.105 75 | 0.040 | 1∶5 | E1 | 0.105 75 | 0.040 | 1∶0.25 | 0.040 | 0.360 | 1∶5 | |||
A4 | 0.126 90 | 0.040 | 1∶5 | E2 | 0.105 75 | 0.040 | 1∶0.75 | 0.040 | 0.360 | 1∶5 | |||
A5 | 0.148 05 | 0.040 | 1∶5 | E3 | 0.105 75 | 0.040 | 1∶1.75 | 0.040 | 0.360 | 1∶5 | |||
B1 | 0.063 45 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | E4 | 0.105 75 | 0.040 | 1∶2.25 | 0.040 | 0.360 | 1∶5 |
B2 | 0.084 60 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F1 | 0.105 75 | 0.040 | 1∶1.25 | 0.000 | 0.360 | 1∶5 |
B3 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F2 | 0.105 75 | 0.040 | 1∶1.25 | 0.020 | 0.360 | 1∶5 |
B4 | 0.126 90 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F3 | 0.105 75 | 0.040 | 1∶1.25 | 0.060 | 0.360 | 1∶5 |
B5 | 0.148 05 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F4 | 0.105 75 | 0.040 | 1∶1.25 | 0.080 | 0.360 | 1∶5 |
C1 | 0.105 75 | 0.000 | 1∶5 | G1 | 0.105 75 | 0.040 | 1∶3 | ||||||
C2 | 0.105 75 | 0.020 | 1∶5 | G2 | 0.105 75 | 0.040 | 1∶4 | ||||||
C3 | 0.105 75 | 0.060 | 1∶5 | G3 | 0.105 75 | 0.040 | 1∶6 | ||||||
C4 | 0.105 75 | 0.080 | 1∶5 | G4 | 0.105 75 | 0.040 | 1∶7 | ||||||
C5 | 0.105 75 | 0.100 | 1∶5 | H1 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶3 | |||
D1 | 0.105 75 | 0.000 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | H2 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶4 |
D2 | 0.105 75 | 0.020 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | H3 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶6 |
D3 | 0.105 75 | 0.060 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | H4 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶7 |
Tab.1 Parameter setup of numerical simulation
工况 | 入射波高/m | 礁坪 水深/m | 结构物 坡度 | 结构物 峰宽/m | 结构物 峰高/m | 礁前斜坡 坡度 | 工况 | 入射波高/m | 礁坪 水深/m | 结构物 坡度 | 结构物 峰宽/m | 结构物 峰高/m | 礁前斜坡 坡度 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.063 45 | 0.040 | 1∶5 | D4 | 0.105 75 | 0.080 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | |||
A2 | 0.084 60 | 0.040 | 1∶5 | D5 | 0.105 75 | 0.100 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | |||
A3 | 0.105 75 | 0.040 | 1∶5 | E1 | 0.105 75 | 0.040 | 1∶0.25 | 0.040 | 0.360 | 1∶5 | |||
A4 | 0.126 90 | 0.040 | 1∶5 | E2 | 0.105 75 | 0.040 | 1∶0.75 | 0.040 | 0.360 | 1∶5 | |||
A5 | 0.148 05 | 0.040 | 1∶5 | E3 | 0.105 75 | 0.040 | 1∶1.75 | 0.040 | 0.360 | 1∶5 | |||
B1 | 0.063 45 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | E4 | 0.105 75 | 0.040 | 1∶2.25 | 0.040 | 0.360 | 1∶5 |
B2 | 0.084 60 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F1 | 0.105 75 | 0.040 | 1∶1.25 | 0.000 | 0.360 | 1∶5 |
B3 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F2 | 0.105 75 | 0.040 | 1∶1.25 | 0.020 | 0.360 | 1∶5 |
B4 | 0.126 90 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F3 | 0.105 75 | 0.040 | 1∶1.25 | 0.060 | 0.360 | 1∶5 |
B5 | 0.148 05 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | F4 | 0.105 75 | 0.040 | 1∶1.25 | 0.080 | 0.360 | 1∶5 |
C1 | 0.105 75 | 0.000 | 1∶5 | G1 | 0.105 75 | 0.040 | 1∶3 | ||||||
C2 | 0.105 75 | 0.020 | 1∶5 | G2 | 0.105 75 | 0.040 | 1∶4 | ||||||
C3 | 0.105 75 | 0.060 | 1∶5 | G3 | 0.105 75 | 0.040 | 1∶6 | ||||||
C4 | 0.105 75 | 0.080 | 1∶5 | G4 | 0.105 75 | 0.040 | 1∶7 | ||||||
C5 | 0.105 75 | 0.100 | 1∶5 | H1 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶3 | |||
D1 | 0.105 75 | 0.000 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | H2 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶4 |
D2 | 0.105 75 | 0.020 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | H3 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶6 |
D3 | 0.105 75 | 0.060 | 1∶1.25 | 0.040 | 0.360 | 1∶5 | H4 | 0.105 75 | 0.040 | 1∶1.25 | 0.040 | 0.360 | 1∶7 |
Fig.12 Along-track distributions of maximum wave heights along shore reefs with and without artificial structure under different incident wave heights
Fig.14 Along-track distributions of maximum wave heights along shore reefs with and without artificial structure under different reef flat water depths
Fig.16 Along-track distribution of maximum wave heights under different artificial structure slopes (a) and variation of maximum drop in local wave height in the vicinity of artificial structure (b)
Fig.17 Along-track distribution of maximum wave heights under different peak widths of artificial structure (a) and variation of maximum local wave height drop near artificial structure (b)
Fig.18 Along-track distribution of maximum wave heights along shore reef with and without artificial structure under different reef front slope gradients
[1] | SYNOLAKIS C E, BERNARD E N. Tsunami science before and beyond Boxing day 2004[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364(1845): 2231-2265. |
[2] | MORI N, TAKAHASHI T. The Tohoku Earthquake Tsunami Joint Survey Group. Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami[J]. Coastal Engi-neering Journal, 2012, 54(1): 1250001. |
[3] |
TITOV V, RABINOVICH A B, MOFJELD H O, et al. The global reach of the 26 December 2004 Sumatra tsunami[J]. Science, 2005, 309(5743): 2045-2048.
PMID |
[4] | GOURLAY M R. Wave set-up on coral reefs. 1. Set-up and wave-generated flow on an idealised two dimensional horizontal reef[J]. Coastal Engineering, 1996, 27(3/4): 161-193. |
[5] | YAO Y, JIA M J, JIANG C B, et al. Laboratory study of wave processes over fringing reefs with a reef-flat excavation pit[J]. Coastal Engineering, 2020, 158: 103700. |
[6] | HARDY T A, YOUNG I R. Field study of wave attenuation on an offshore coral reef[J]. Journal of Geophysical Research: Oceans, 1996, 101(C6): 14311-14326. |
[7] | LUGO-FERNÁNDEZ A, HERNÁNDEZ-ÁVILA M L, ROBERTS H H. Wave-energy distribution and hurricane effects on Margarita Reef, southwestern Puerto Rico[J]. Coral Reefs, 1994, 13(1): 21-32. |
[8] | GRADY A E, MOORE L J, STORLAZZI C D, et al. The influence of sea level rise and changes in fringing reef morphology on gradients in alongshore sediment transport[J]. Geophysical Research Letters, 2013, 40(12): 3096-3101. |
[9] | FARHADI A, EMDAD H, RAD E G. On the numerical simulation of the nonbreaking solitary waves run up on sloping beaches[J]. Computers & Mathematics with Applications, 2015, 70(9): 2270-2281. |
[10] | LIU P L, AL-BANAA K. Solitary wave runup and force on a vertical barrier[J]. Journal of Fluid Mechanics, 2004, 505: 225-233. |
[11] | 张金牛, 吴卫, 刘桦, 等. 孤立波作用下斜坡堤越浪量的实验研究[J]. 水动力学研究与进展A辑, 2014, 29(6):656-662. |
ZHANG J N, WU W, LIU H, et al. An experimental study on overtopping of solitary wave against a slope dike[J]. Chinese Journal of Hydrodynamics, 2014, 29(6): 656-662. | |
[12] |
张良斌, 屈科, 黄竞萱, 等. 风对孤立波海堤越浪特性影响的数值模拟研究[J]. 海洋学研究, 2023, 41(4):32-45.
DOI |
ZHANG L B, QU K, HUANG J X, et al. Numerical simulation study on influences of onshore wind on overtopping characteristics of solitary wave under coastal seawall[J]. Journal of Marine Sciences, 2023, 41(4): 32-45.
DOI |
|
[13] | CHANG K G, HSU T J, LIU P L. Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle Part I. Solitary waves[J]. Coastal Engineering, 2001, 44(1): 13-36. |
[14] | LIN C, HO T C, CHANG S C, et al. Vortex shedding induced by a solitary wave propagating over a submerged vertical plate[J]. International Journal of Heat and Fluid Flow, 2005, 26(6): 894-904. |
[15] | 韩新宇, 董胜, 崔俊男. 潜堤上孤立波传播的格子Boltzmann法数值模拟[J]. 工程力学, 2019, 36(9):247-256. |
HAN X Y, DONG S, CUI J N. Numerical study of the interaction between a solitary wave and submerge breakwater based on lattice Boltzmann method[J]. Engineering Mechanics, 2019, 36(9): 247-256. | |
[16] | TOUHAMI H E, KHELLAF M C. Laboratory study on effects of submerged obstacles on tsunami wave and run-up[J]. Natural Hazards, 2017, 87(2): 757-771. |
[17] | YAO Y, HE F, TANG Z J, et al. A study of tsunami-like solitary wave transformation and run-up over fringing reefs[J]. Ocean Engineering, 2018, 149: 142-155. |
[18] | 肖理, 房克照, 孙家文, 等. 孤立波对礁坪上直墙冲击试验和RANS数值模拟[J]. 海洋工程, 2021, 39(4):86-95. |
XIAO L, FANG K Z, SUN J W, et al. Experiment and RANS simulation of the impact of solitary wave on a straight wall mounted on reef flat[J]. The Ocean Engineering, 2021, 39(4): 86-95. | |
[19] | FU R L, MA Y X, DONG G H. Investigation of wave-driven currents and statistical moments of irregular waves over a one dimensional horizontal fringing reef[J]. Applied Ocean Research, 2021, 112: 102690. |
[20] | 王旭, 屈科, 门佳. 人工采砂坑对规则波岸礁水动力特性的影响研究[J]. 海洋通报, 2024, 43(1):69-85. |
WANG X, QU K, MEN J. Study on the effects of artificial excavation pits on the hydrodynamic characteristics of regular wave over fringing reef[J]. Marine Science Bulletin, 2024, 43(1): 69-85. | |
[21] | 王旭, 屈科, 门佳. 透水珊瑚岸礁亚重力波水动力特性数值研究[J]. 海洋学报, 2023, 45(9):152-167. |
WANG X, QU K, MEN J. Numerical study on infragravity wave hydrodynamics of permeable fringing reef[J]. Haiyang Xuebao, 2023, 45(9): 152-167. | |
[22] | AI C F, MA Y X, YUAN C F, et al. Development and assessment of semi-implicit nonhydrostatic models for surface water waves[J]. Ocean Modelling, 2019, 144: 101489. |
[23] | MA G F, SHI F Y, KIRBY J T. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes[J]. Ocean Modelling, 2012, 43: 22-35. |
[24] | RODI W. Examples of calculation methods for flow and mixing in stratified fluids[J]. Journal of Geophysical Research: Oceans, 1987, 92(C5): 5305-5328. |
[25] | LIU W J, SHAO K Q, NING Y. A study of the maximum momentum flux in the solitary wave run-up zone over back-reef slopes based on a Boussinesq model[J]. Journal of Marine Science and Engineering, 2019, 7(4): 109. |
[26] | TOUHAMI H E, BOUMARAF A, KHELLAF M C. Experimental study of low-crested structures’ porosity effect on tsunami waves and run-up[J]. Journal of Ocean Engineering and Marine Energy, 2022, 8(3): 369-380. |
[1] | WANG Zhihong, QU Ke, YANG Yuanping, WANG Xu, GAO Rongze. Application of convolutional neural network method in evolution of tidal bore hydrodynamic characteristics [J]. Journal of Marine Sciences, 2024, 42(3): 131-141. |
[2] | JIN Chenxin, CUI Zijian, LIANG Chujin, LIN Feilong, CHEN Zhentao. Establishment and evaluation of a Velocity-Gaussian Function Model for internal solitary waves [J]. Journal of Marine Sciences, 2024, 42(2): 55-61. |
[3] | LÜ Zhao, WU Zhiyuan, JIANG Changbo, ZHANG Haojian, GAO Kai, YAN Ren. Numerical investigation of the super typhoon Mangkhut based on the coupled air-sea model [J]. Journal of Marine Sciences, 2023, 41(4): 21-31. |
[4] | ZHANG Liangbin, QU Ke, HUANG Jingxuan, WANG Xu, GUO Lei. Numerical simulation study on influences of onshore wind on overtopping characteristics of solitary wave under coastal seawall [J]. Journal of Marine Sciences, 2023, 41(4): 32-45. |
[5] | ZHANG Chenhao, ZHANG Mingliang, CHAI Chongxu, et al. Numerical study of wave-vegetation interaction based on OpenFOAM software [J]. Journal of Marine Sciences, 2022, 40(1): 42-52. |
[6] | CUI Zijian, LIANG Chujin, LIN Feilong, JIN Weifang, DING Tao, WANG Juan. The observation and analysis of the internal solitary waves by mooring system in the Andaman Sea [J]. Journal of Marine Sciences, 2020, 38(4): 16-25. |
[7] | ZHANG Jiali, ZHANG Anmin, SUN Chaohui, ZHANG Xuefeng, ZHANG Liang. The application research of Robust Vondrak filtering method in extracting internal solitary waves [J]. Journal of Marine Sciences, 2020, 38(1): 1-8. |
[8] | WU Zhi-yuan, JIANG Chang-bo, HE Zhi-yong, CHEN Jie, DENG Bin, XIE Zhen-dong. Coupled atmosphere and wave model and its application in an idealized typhoon [J]. Journal of Marine Sciences, 2019, 37(2): 9-15. |
[9] | SU Yin-qiu, PAN Guo-fu, YU Liang-liang, YANG Wan-kang. Response of bay water exchange to water intake and drainage project [J]. Journal of Marine Sciences, 2018, 36(4): 76-83. |
[10] | ZHANG Fu-kun, ZOU Chuan-ling, LIU Shu-jing, XU Xian, LIU Wei. 3D-numerical simulation on distribution of brine discharge from seawater desalination plant in the sea area near Jinjiang [J]. Journal of Marine Sciences, 2018, 36(2): 12-18. |
[11] | HUANG Zong-wei, DENG Bin, JIANG Chang-bo, LIU Xiao-jian. Numerical simulation of water exchange capability for the encircled harbor:A case study of Zhapo fishing port [J]. Journal of Marine Sciences, 2018, 36(1): 66-74. |
[12] | HUANG Pan-yang, LAI Xiang-hua, JI You-jun, HU Tao-jun, WANG You-zhong. Numerical simulation of sea dikes breaching flood in Donggangxincheng of Zhoushan [J]. Journal of Marine Sciences, 2017, 35(4): 61-68. |
[13] | ZOU Yi-hang, MA Xu-lin, JIANG Sheng, HE Hai-lun, GUO Huan. Effect of COSMIC occultation data assimilation on prediction of typhoon Usagi [J]. Journal of Marine Sciences, 2017, 35(3): 9-19. |
[14] | YU Kai-ben, YANG Tao, GAO Jian, LIN Guang-yi, MENG Qing-jian, ZONG Le. Numerical simulation analysis of scour around Trawl Resistant Seabed Basement based on Flow-3D [J]. Journal of Marine Sciences, 2017, 35(3): 91-98. |
[15] | XU Song-yun, XU Hui-ping, GENG Ming-hui, GUAN Yong-xian. Study on the form of internal solitary wave in Dongsha area of the South China Sea [J]. Journal of Marine Sciences, 2016, 34(4): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||