Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (4): 21-31.DOI: 10.3969/j.issn.1001-909X.2023.04.003
Previous Articles Next Articles
LÜ Zhao1(), WU Zhiyuan1,2,3,*(), JIANG Changbo1,3,4, ZHANG Haojian1, GAO Kai1, YAN Ren1
Received:
2022-12-20
Revised:
2023-03-20
Online:
2023-12-15
Published:
2024-01-30
CLC Number:
LÜ Zhao, WU Zhiyuan, JIANG Changbo, ZHANG Haojian, GAO Kai, YAN Ren. Numerical investigation of the super typhoon Mangkhut based on the coupled air-sea model[J]. Journal of Marine Sciences, 2023, 41(4): 21-31.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2023.04.003
物理选项 | 参数化方案 |
---|---|
云微物理方案(mp_physics) | WSM 6-class graupel方案 |
长波辐射(ra_lw_physics) | RRTMG方案 |
短波辐射(ra_sw_physics) | RRTMG方案 |
表面层物理选项(sf_sfclay_physics) | Monin-Obukhov方案 |
地表陆面方案(sf_surface_physics) | Noah地表模型 |
行星边界层(bl_pbl_physics) | YSU方案 |
积云参数(cu_physics) | Kain-Fritsch方案 |
Tab.1 Configuration of the physical parameterization schemes in the WRF model
物理选项 | 参数化方案 |
---|---|
云微物理方案(mp_physics) | WSM 6-class graupel方案 |
长波辐射(ra_lw_physics) | RRTMG方案 |
短波辐射(ra_sw_physics) | RRTMG方案 |
表面层物理选项(sf_sfclay_physics) | Monin-Obukhov方案 |
地表陆面方案(sf_surface_physics) | Noah地表模型 |
行星边界层(bl_pbl_physics) | YSU方案 |
积云参数(cu_physics) | Kain-Fritsch方案 |
Fig.1 The simulation domain and nested grids of the coupled air-sea model (The blue solid line represents the WRF nested grid,and the red dashed line represents the ROMS nested grid.)
Fig.3 Comparison of typhoon central pressure and maximum wind speed from the models with those from the best-track dataset (Vertical dashed line represents the time of typhoon landfall.)
Fig.4 Comparison of the bias of the track simulated by two different models with that from the best-track dataset (Vertical dashed line represents the time of typhoon landfall.)
Fig.9 Spatial distribution of typhoon wind fields and wind-generated current fields ( represents the typhoon center; represents the center of the flow field.)
Fig.10 Comparison of wind speed and current velocity as well as wind direction and current direction at the stations (The black dotted line indicates the time when the typhoon passes through the stations.)
Fig.12 Spatial distribution of sea surface current fields and surge caused by super typhoon Mangkhut ( represents the typhoon center; represents the center of the flow field.)
Fig.13 Time series of wind speed, pressure, current velocity and storm surge at the stations (The black dotted line indicates the time when the typhoon passes through the stations.)
[1] |
MUIS S, VERLAAN M, WINSEMIUS H C, et al. A global reanalysis of storm surges and extreme sea levels[J]. Nature Communications, 2016, 7: 11969.
DOI PMID |
[2] |
WANG Y B, LIU J Q, DU X, et al. Temporal-spatial characteristics of storm surges and rough seas in coastal areas of China’s Mainland from 2000 to 2019[J]. Natural Hazards, 2021, 107(2): 1273-1285.
DOI |
[3] |
SHI X W, HAN Z Q, FANG J Y, et al. Assessment and zonation of storm surge hazards in the coastal areas of China[J]. Natural Hazards, 2020, 100(1): 39-48.
DOI |
[4] | 段自强, 李永平, 于润玲, 等. 海洋飞沫方案改进对台风“威马逊”强度预报的影响[J]. 海洋与湖沼, 2016, 47(6):1075-1090. |
DUAN Z Q, LI Y P, YU R L, et al. On tropical cyclone intensity forecast using improved sea spray scheme in regional atmosphere-wave coupled model[J]. Oceanologia et Limnologia Sinica, 2016, 47(6): 1075-1090. | |
[5] | 丁瑞, 朱良生. 条件变化对海口湾风暴增水的影响分析:以海鸥台风为例[J]. 海洋工程, 2018, 36(4):147-154. |
DING R, ZHU L S. Impact of condition on storm surge in the Haikou Bay[J]. The Ocean Engineering, 2018, 36(4): 147-154. | |
[6] | ZHANG W Z, LIN S, JIANG X M. Influence of tropical cyclones in the western North Pacific[M]//LUPO A R. Recent developments in tropical cyclone dynamics, prediction, and detection. InTech, 2016: 3-24. |
[7] |
EZER T. On the interaction between a hurricane, the Gulf Stream and coastal sea level[J]. Ocean Dynamics, 2018, 68(10): 1259-1272.
DOI |
[8] | 张浩键, 伍志元, 刘晓建, 等. 台风“天鸽”影响下珠江口水动力过程数值模拟研究[J]. 长沙理工大学学报:自然科学版, 2023, 20(4):142-152. |
ZHANG H J, WU Z Y, LIU X J, et al. Numerical simulation of hydrodynamic processes in the Pearl River Estuary influenced by Typhoon “Hato”[J]. Journal of Changsha University of Science & Technology: Natural Science, 2023, 20(4): 142-152. | |
[9] |
LIN S, ZHANG W Z, SHANG S P, et al. Ocean response to typhoons in the western North Pacific: Composite results from Argo data[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 123: 62-74.
DOI URL |
[10] | JANSSEN P. The interaction of ocean waves and wind[M]. Cambridge, UK: Cambridge University Press, 2004. |
[11] | 叶芳, 刘磊, 马占宏, 等. 不同环境风场条件下冷尾流对台风强度的影响[J]. 热带气象学报, 2017, 33(3):368-374. |
YE F, LIU L, MA Z H, et al. Effect of cold wake on typhoon intensity in different environmental wind fields[J]. Journal of Tropical Meteorology, 2017, 33(3): 368-374. | |
[12] |
ZHAO X H, CHAN J C L. Changes in tropical cyclone intensity with translation speed and mixed-layer depth: Idealized WRF-ROMS coupled model simulations[J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(702): 152-163.
DOI URL |
[13] | SHEN W X, GINIS I. Effects of surface heat flux-induced sea surface temperature changes on tropical cyclone intensity[J]. Geophysical Research Letters, 2003, 30(18): 1933. |
[14] |
CHEN S E, CAMPBELL T J, JIN H, et al. Effect of two-way air-sea coupling in high and low wind speed regimes[J]. Monthly Weather Review, 2010, 138(9): 3579-3602.
DOI URL |
[15] |
MOHANTY S, NADIMPALLI R, OSURI K K, et al. Role of sea surface temperature in modulating life cycle of tropical cyclones over bay of Bengal[J]. Tropical Cyclone Research and Review, 2019, 8(2): 68-83.
DOI URL |
[16] | 蒋小平, 刘春霞, 齐义泉. 利用一个海气耦合模式对台风Krovanh的模拟[J]. 大气科学, 2009, 33(1):99-108. |
JIANG X P, LIU C X, QI Y Q. The simulation of typhoon Krovanh using a coupled air-sea model[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(1): 99-108. | |
[17] |
WARNER J C, ARMSTRONG B, HE R Y, et al. Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system[J]. Ocean Modelling, 2010, 35(3): 230-244.
DOI URL |
[18] | 伍志元, 蒋昌波, 邓斌, 等. 基于海气耦合模式的南中国海北部风暴潮模拟[J]. 科学通报, 2018, 63(33):3494-3504. |
WU Z Y, JIANG C B, DENG B, et al. Simulation of the storm surge in the South China Sea based on the coupled sea-air model[J]. Chinese Science Bulletin, 2018, 63(33): 3494-3504. | |
[19] |
MOONEY P A, MULLIGAN F J, BRUYÈRE C L, et al. Investigating the performance of coupled WRF-ROMS simulations of Hurricane Irene (2011) in a regional climate modeling framework[J]. Atmospheric Research, 2019, 215: 57-74.
DOI URL |
[20] |
WU Z Y, JIANG C B, DENG B, et al. Numerical investigation of Typhoon Kai-tak (1213) using a mesoscale coupled WRF-ROMS model[J]. Ocean Engineering, 2019, 175: 1-15.
DOI URL |
[21] |
WU Z Y, JIANG C B, DENG B, et al. Numerical investi-gation of Typhoon Kai-tak (1213) using a mesoscale coupled WRF-ROMS model— Part Ⅱ: Wave effects[J]. Ocean Engineering, 2020, 196: 106805.
DOI URL |
[22] | 李心雨, 杨昀, 李自如, 等. WRF大气模式与台风经验模型在超强台风“山竹”过程重构中的比较分析[J]. 海洋工程, 2022, 40(4):53-64,111. |
LI X Y, YANG Y, LI Z R, et al. Comparative analyses on reconstructed processes of super typhoon Mangkhut using the WRF atmospheric model and typhoon empirical models[J]. The Ocean Engineering, 2022, 40(4): 53-64, 111. | |
[23] | 陈晓斐, 齐琳琳, 何尽解, 等. 海洋垂直混合对中尺度海气浪耦合模式预报效果的敏感性试验[J]. 热带气象学报, 2018, 34(6):845-855. |
CHEN X F, QI L L, HE J J, et al. A study of sensitivity to the choices of vertical mixing parameterizations in a coupled atmosphere-ocean-wave model[J]. Journal of Tropical Meteorology, 2018, 34(6): 845-855. | |
[24] | LI Z N, TAM C Y, LI Y B, et al. How does air-sea wave interaction affect tropical cyclone intensity? An atmosphere-wave-ocean coupled model study based on super typhoon Mangkhut (2018)[J]. Earth and Space Science, 2022, 9(3): e2021EA002136. |
[25] | 于玲玲, 麦健华, 程正泉, 等. 热带气旋大风风圈半径非对称性特征及成因简析[J]. 气象学报, 2022, 80(6):896-908. |
YU L L, MAI J H, CHENG Z Q, et al. Analysis on the asymmetric characteristics and causes of the wind circle radius of tropical cyclones[J]. Acta Meteorologica Sinica, 2022, 80(6): 896-908. | |
[26] |
LIU J L, ZHANG H, ZHONG R, et al. Impacts of wave feedbacks and planetary boundary layer parameterization schemes on air-sea coupled simulations: A case study for Typhoon Maria in 2018[J]. Atmospheric Research, 2022, 278: 106344.
DOI URL |
[1] | ZHANG Liangbin, QU Ke, HUANG Jingxuan, WANG Xu, GUO Lei. Numerical simulation study on influences of onshore wind on overtopping characteristics of solitary wave under coastal seawall [J]. Journal of Marine Sciences, 2023, 41(4): 32-45. |
[2] | LIANG Haiping, LI Tuanjie, LIANG Haiyan, GAO Lu. Distributional characteristics and influencing factors of storm surge in Haikou [J]. Journal of Marine Sciences, 2022, 40(2): 83-92. |
[3] | ZHANG Chenhao, ZHANG Mingliang, CHAI Chongxu, et al. Numerical study of wave-vegetation interaction based on OpenFOAM software [J]. Journal of Marine Sciences, 2022, 40(1): 42-52. |
[4] | WANG Weiyang, TANG Yong, REN Jianye, LI He, ZHAO Yanghui, FANG Yinxia, . Division of passive continental margin structural units and extensional evolution process in the southwest subbasin of the South China Sea [J]. Journal of Marine Sciences, 2021, 39(3): 31-43. |
[5] | FANG Mingbao, HUANG Jiayu, YANG Wankang, SUN Chunjian. The study on design basis flood level of island nuclear power plant [J]. Journal of Marine Sciences, 2020, 38(4): 80-87. |
[6] | WU Zhi-yuan, JIANG Chang-bo, HE Zhi-yong, CHEN Jie, DENG Bin, XIE Zhen-dong. Coupled atmosphere and wave model and its application in an idealized typhoon [J]. Journal of Marine Sciences, 2019, 37(2): 9-15. |
[7] | SU Yin-qiu, PAN Guo-fu, YU Liang-liang, YANG Wan-kang. Response of bay water exchange to water intake and drainage project [J]. Journal of Marine Sciences, 2018, 36(4): 76-83. |
[8] | XUE Shu-jun. The analysis on characteristics of local typhoon intensity variation in the South China Sea [J]. Journal of Marine Sciences, 2018, 36(3): 1-16. |
[9] | ZHANG Fu-kun, ZOU Chuan-ling, LIU Shu-jing, XU Xian, LIU Wei. 3D-numerical simulation on distribution of brine discharge from seawater desalination plant in the sea area near Jinjiang [J]. Journal of Marine Sciences, 2018, 36(2): 12-18. |
[10] | HUANG Zong-wei, DENG Bin, JIANG Chang-bo, LIU Xiao-jian. Numerical simulation of water exchange capability for the encircled harbor:A case study of Zhapo fishing port [J]. Journal of Marine Sciences, 2018, 36(1): 66-74. |
[11] | HUANG Pan-yang, LAI Xiang-hua, JI You-jun, HU Tao-jun, WANG You-zhong. Numerical simulation of sea dikes breaching flood in Donggangxincheng of Zhoushan [J]. Journal of Marine Sciences, 2017, 35(4): 61-68. |
[12] | ZOU Yi-hang, MA Xu-lin, JIANG Sheng, HE Hai-lun, GUO Huan. Effect of COSMIC occultation data assimilation on prediction of typhoon Usagi [J]. Journal of Marine Sciences, 2017, 35(3): 9-19. |
[13] | YU Kai-ben, YANG Tao, GAO Jian, LIN Guang-yi, MENG Qing-jian, ZONG Le. Numerical simulation analysis of scour around Trawl Resistant Seabed Basement based on Flow-3D [J]. Journal of Marine Sciences, 2017, 35(3): 91-98. |
[14] | LIN Qi-liang, HUANG Da-ji, XUAN Ji-liang. Spatial variation of the tidal residual currents in the coastal area off Zhejiang and Fujian Provinces in the East China Sea [J]. Journal of Marine Sciences, 2015, 33(4): 30-36. |
[15] | YANG Yun, WANG Hui-qun, GUAN Wei-bing, CAO Zhen-yi, CHEN Qi. Study on characteristics and numerical simulation of storm surge around the Zhoushan Island [J]. Journal of Marine Sciences, 2015, 33(3): 7-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||