Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (4): 70-82.DOI: 10.3969/j.issn.1001-909X.2024.04.007
Previous Articles Next Articles
YE Shengyuan1,2(), HAN Xiqiu1,2,*(
), LI Honglin1,2
Received:
2023-06-12
Revised:
2023-06-27
Online:
2024-12-15
Published:
2025-02-08
Contact:
HAN Xiqiu
CLC Number:
YE Shengyuan, HAN Xiqiu, LI Honglin. The tectonic geomorphology and magmatic-tectonic activity in the 61°24'E-61°48'E segment of the Carlsberg Ridge in the Northwest Indian Ocean[J]. Journal of Marine Sciences, 2024, 42(4): 70-82.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.04.007
Fig.1 Topographic map of the study area (The bathymetric data are sourced from the DY24 Cruise. The projection method is Gauss-Kruger. The grid resolution is 50 m. The small globe map in the upper right corner is the distribution map of Indian Ocean ridges, the red line in the map is the mid-ocean ridge line, the yellow line is the plate boundary, and the red five-pointed star is the location of the study area.)
名称 | 脊段 长度 /km | 轴部 裂谷 宽度/km | 最大 水深/m | 轴部 裂谷 高度/m | AVR 高度/m | 轴部裂谷 高宽比/ (×10-3) |
---|---|---|---|---|---|---|
洋中脊A段 | 14.0 | 4 075 | ||||
剖面1 | 13.6 | 4 068 | 900 | 130 | 66.2 | |
剖面2 | 10.3 | 3 952 | 801 | 163 | 77.8 | |
剖面3 | 9.5 | 3 460 | 683 | 280 | 71.9 | |
剖面4 | 8.9 | 3 901 | 860 | 112 | 96.6 | |
洋中脊B段 | 40.0 | 4 175 | ||||
剖面5 | 9.5 | 4 087 | 884 | 405 | 93.1 | |
剖面6 | 9.1 | 4 148 | 1 313 | 685 | 144.3 | |
剖面7 | 10.4 | 3 980 | 1 467 | 667 | 141.1 | |
剖面8 | 9.5 | 3 556 | 1 012 | 528 | 106.5 | |
剖面9 | 10.2 | 3 548 | 1 004 | 322 | 98.4 | |
剖面10 | 9.8 | 3 700 | 1 102 | 500 | 112.4 | |
剖面11 | 9.7 | 3 972 | 1 148 | 580 | 118.4 | |
剖面12 | 9.8 | 3 957 | 1 617 | 451 | 165.0 | |
剖面13 | 9.4 | 4 016 | 1 673 | 251 | 178.0 | |
剖面14 | 8.9 | 3 947 | 1 340 | 220 | 150.6 | |
洋中脊C段 | 21.0 | 4 370 | ||||
剖面17 | 16.9 | 4 343 | 1 013 | 306 | 59.9 | |
剖面18 | 15.5 | 4 125 | 1 092 | 461 | 70.5 | |
剖面19 | 13.8 | 4 141 | 1 197 | 603 | 86.7 | |
剖面20 | 14.6 | 4 087 | 957 | 660 | 65.5 | |
剖面21 | 13.7 | 4 028 | 697 | 832 | 50.9 | |
洋中脊D段 | 17.5 | 3 920 | ||||
剖面22 | 20.9 | 3 845 | 1 429 | 275 | 68.4 | |
剖面23 | 20.5 | 3 782 | 996 | 391 | 48.6 | |
剖面24 | 15.4 | 3 648 | 953 | 202 | 61.9 | |
剖面25 | 14.8 | 3712 | 643 | 258 | 43.4 |
Tab.2 Morphology and some important structural feature data of mid-ocean ridge segments A, B, C and D
名称 | 脊段 长度 /km | 轴部 裂谷 宽度/km | 最大 水深/m | 轴部 裂谷 高度/m | AVR 高度/m | 轴部裂谷 高宽比/ (×10-3) |
---|---|---|---|---|---|---|
洋中脊A段 | 14.0 | 4 075 | ||||
剖面1 | 13.6 | 4 068 | 900 | 130 | 66.2 | |
剖面2 | 10.3 | 3 952 | 801 | 163 | 77.8 | |
剖面3 | 9.5 | 3 460 | 683 | 280 | 71.9 | |
剖面4 | 8.9 | 3 901 | 860 | 112 | 96.6 | |
洋中脊B段 | 40.0 | 4 175 | ||||
剖面5 | 9.5 | 4 087 | 884 | 405 | 93.1 | |
剖面6 | 9.1 | 4 148 | 1 313 | 685 | 144.3 | |
剖面7 | 10.4 | 3 980 | 1 467 | 667 | 141.1 | |
剖面8 | 9.5 | 3 556 | 1 012 | 528 | 106.5 | |
剖面9 | 10.2 | 3 548 | 1 004 | 322 | 98.4 | |
剖面10 | 9.8 | 3 700 | 1 102 | 500 | 112.4 | |
剖面11 | 9.7 | 3 972 | 1 148 | 580 | 118.4 | |
剖面12 | 9.8 | 3 957 | 1 617 | 451 | 165.0 | |
剖面13 | 9.4 | 4 016 | 1 673 | 251 | 178.0 | |
剖面14 | 8.9 | 3 947 | 1 340 | 220 | 150.6 | |
洋中脊C段 | 21.0 | 4 370 | ||||
剖面17 | 16.9 | 4 343 | 1 013 | 306 | 59.9 | |
剖面18 | 15.5 | 4 125 | 1 092 | 461 | 70.5 | |
剖面19 | 13.8 | 4 141 | 1 197 | 603 | 86.7 | |
剖面20 | 14.6 | 4 087 | 957 | 660 | 65.5 | |
剖面21 | 13.7 | 4 028 | 697 | 832 | 50.9 | |
洋中脊D段 | 17.5 | 3 920 | ||||
剖面22 | 20.9 | 3 845 | 1 429 | 275 | 68.4 | |
剖面23 | 20.5 | 3 782 | 996 | 391 | 48.6 | |
剖面24 | 15.4 | 3 648 | 953 | 202 | 61.9 | |
剖面25 | 14.8 | 3712 | 643 | 258 | 43.4 |
[1] | MURTON B J, BAKER E T, SANDS C M, et al. Detection of an unusually large hydrothermal event plume above the slow-spreading Carlsberg Ridge: NW Indian Ocean[J]. Geophysical Research Letters, 2006, 33(10): L10608. |
[2] | HARRIS P T, MACMILLAN-LAWLER M, RUPP J, et al. Geomorphology of the oceans[J]. Marine Geology, 2014, 352: 4-24. |
[3] | MENDEL V, SAUTER D, ROMMEVAUX-JESTIN C, et al. Magmato-tectonic cyclicity at the ultra-slow spreading Southwest Indian Ridge: Evidence from variations of axial volcanic ridge morphology and abyssal hills pattern[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(5): 9102. |
[4] | YEO I, SEARLE R C, ACHENBACH K L, et al. Eruptive hummocks: Building blocks of the upper ocean crust[J]. Geology, 2012, 40(1): 91-94. |
[5] | KAMESH RAJU K A, CHAUBEY A K, AMARNATH D, et al. Morphotectonics of the Carlsberg Ridge between 62°20' and 66°20'E, northwest Indian Ocean[J]. Marine Geology, 2008, 252(3/4): 120-128. |
[6] | HARRIS P T, WHITEWAY T. High seas marine protected areas: Benthic environmental conservation priorities from a GIS analysis of global ocean biophysical data[J]. Ocean & Coastal Management, 2009, 52(1): 22-38. |
[7] | TUCHOLKE B E, LIN J. A geological model for the structure of ridge segments in slow spreading ocean crust[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B6): 11937-11958. |
[8] | 韩喜球, 吴招才, 裘碧波. 西北印度洋 Carlsberg脊的分段性及其构造地貌特征——中国大洋24航次调查成果介绍[R]// 深海研究与地球系统科学学术研讨会, 2012. |
HAN X Q, WU Z C, QIU B B. The segmentation of the Carlsberg Ridge in the Northwest Indian Ocean and its tectonic and geomorphologic characteristics—Introduction to China Oceans 24 Cruise Survey results[R]// Deep sea research and earth system science conference, 2012. | |
[9] |
杨驰, 韩喜球, 王叶剑, 等. 卡尔斯伯格脊60°—61°E洋脊段多波束后向散射特征及其对构造与岩浆作用强度的指示[J]. 海洋学研究, 2018, 36(3):37-49.
DOI |
YANG C, HAN X Q, WANG Y J, et al. Characteristics of the multibeam backscatter of Carlsberg Ridge(60°-61°E)and its indication on the tectonism and magmatism[J]. Journal of Marine Sciences, 2018, 36(3): 37-49.
DOI |
|
[10] | 余星, 韩喜球, 邱中炎, 等. 西北印度洋脊的厘定及其地质构造特征[J]. 地球科学, 2019, 44(2):626-639. |
YU X, HAN X Q, QIU Z Y, et al. Definition of northwest Indian ridge and its geologic and tectonic signatures[J]. Earth Science, 2019, 44(2): 626-639. | |
[11] | WANG Y J, HAN X Q, ZHOU Y D, et al. The Daxi Vent Field: An active mafic-hosted hydrothermal system at a non-transform offset on the slow-spreading Carlsberg Ridge, 6°48’N[J]. Ore Geology Reviews, 2021, 129: 103888. |
[12] | 李洪林, 李江海, 王洪浩, 等. 海洋核杂岩形成机制及其热液硫化物成矿意义[J]. 海洋地质与第四纪地质, 2014, 34(2):53-59. |
LI H L, LI J H, WANG H H, et al. Formation mechanism of oceanic core complex and its significance to the mineralization of hydrothermal sulfide[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 53-59. | |
[13] | 余星, 初凤友, 董彦辉, 等. 拆离断层与大洋核杂岩:一种新的海底扩张模式[J]. 地球科学, 2013, 38(5):995-1004. |
YU X, CHU F Y, DONG Y H, et al. Detachment fault and oceanic core complex: A new mode of seafloor spreading[J]. Earth Science, 2013, 38(5): 995-1004. | |
[14] | 杨驰. 卡尔斯伯格脊 60°E-61°E洋脊段地形地貌特征——基于多波束资料的分析[D]. 杭州: 自然资源部第二海洋研究所, 2018. |
YANG C. Topographic and geomorphologic characteristics of the 60°E-61°E ridge section of the Carlsberg Ridge—an analysis based on multibeam data[D]. Hangzhou: Second Institute of Oceanography, MNR, 2018. | |
[15] | KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Chemical Metallurgical & Mining Society of South Africa, 1951, 52(6): 119-139. |
[16] | MATHERON G. Principles of geostatistics[J]. Economic Geology, 1963, 58(8): 1246-1266. |
[17] | WESSEL P, SMITH W H F, SCHARROO R, et al. Generic mapping tools: Improved version released[J]. Eos, Tran-sactions American Geophysical Union, 2013, 94(45): 409-410. |
[18] | HOWELL S M, ITO G, BEHN M D, et al. Magmatic and tectonic extension at the Chile Ridge: Evidence for mantle controls on ridge segmentation[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(6): 2354-2373. |
[19] | ANDERSON M O, CHADWICK JR W W, HANNINGTON M D, et al. Geological interpretation of volcanism and seg-mentation of the Mariana back-arc spreading center between 12.7°N and 18.3°N[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 2240-2274. |
[20] | O’CALLAGHAN J F, MARK D M. The extraction of drainage networks from digital elevation data[J]. Computer Vision, Graphics, and Image Processing, 1984, 28(3): 323-344. |
[21] | XU Y C, CHEN N H, TAO C H, et al. Magmato-tectonic mechanism of Southwest Indian Ridge (49°-50°E) inferred from quantitative morphotectonic analysis based on high-resolution multibeam bathymetry[J]. Marine Geology, 2021, 434: 106421. |
[22] | 党牛, 余星, 韩喜球, 等. 基于海底DEM的洋中脊火山锥自动识别方法研究[J]. 海洋学研究, 2021, 39(3):12-20. |
DANG N, YU X, HAN X Q, et al. Automatic recognition of volcanic cones at mid-ocean ridges based on the seabed DEM data[J]. Journal of Marine Sciences, 2021, 39(3): 12-20.
DOI |
|
[23] | 陈强. 高级计量经济学及Stata应用[M]. 北京: 高等教育出版社, 2010. |
CHEN Q. Advanced econometrics and Stata application[M]. Beijing: Higher Education Press, 2010. | |
[24] | SILVERMAN B W. Density estimation for statistics and data analysis[M]. London: Chapman and Hall, 1986. |
[25] |
刘守金, 林间, 罗怡鸣. 东南印度洋中脊(108°—134°E区域)断层构造与岩浆活动关系[J]. 热带海洋学报, 2019, 38(4):70-80.
DOI |
LIU S J, LIN J, LUO Y M. Variations in tectonic faulting and magmatism at the southeast Indian ridge at 108°-134°E[J]. Journal of Tropical Oceanography, 2019, 38(4): 70-80.
DOI |
|
[26] | DEMETS C, GORDON R G, ARGUS D F. Geologically current plate motions[J]. Geophysical Journal International, 2010, 181(1): 1-80. |
[27] | ARGUS D F, GORDON R G, DEMETS C. Geologically current motion of 56 plates relative to the no-net-rotation reference frame[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(11): Q11001. |
[28] | KLISCHIES M, PETERSEN S, DEVEY C W. Geological mapping of the Menez Gwen segment at 37°50’N on the Mid-Atlantic Ridge: Implications for accretion mechanisms and associated hydrothermal activity at slow-spreading mid-ocean ridges[J]. Marine Geology, 2019, 412: 107-122. |
[29] | 范庆凯. 超慢速洋中脊构造特征及热液驱动机制:以西南印度洋中脊49°—52°E为例[D]. 北京: 北京大学, 2020. |
FAN Q K. Characteristics of ultra-slow spreading ridge and hydrothermal driving mechanism: Taking the Southwest Indian Ridge 49°-52°E as an example[D]. Beijing: Peking University, 2020. |
[1] | TANG Ling, YANG Muzhuang, WANG Yinxia, GAO Yang, TIAN Song, DONG Di. Study on spatial distribution characteristics of islandsin Guangdong-Hong Kong-Macao Greater Bay Area [J]. Journal of Marine Sciences, 2020, 38(2): 74-80. |
[2] | ZHANG Zhiyi, XU Dong, HAN Xibin, WANG Yanbing, HU Zhilong, GE Qian, YANG Fanlin. High-precision geomorphological characteristics of the seafloor near the Yap-Mariana Trench [J]. Journal of Marine Sciences, 2020, 38(1): 27-41. |
[3] | YANG Chi, HAN Xi-qiu, WANG Ye-jian, LI Hong-lin, QIU Zhong-yan, WU Zhao-cai. Characteristics of the multibeam backscatter of Carlsberg Ridge(60°-61°E) and its indication on the tectonism and magmatism [J]. Journal of Marine Sciences, 2018, 36(3): 37-49. |
[4] | JIANG Zi-jing, HAN Xi-qiu, WANG Ye-jian, QIU Zhong-yan. Characteristics of water chemistry and constituents of particles in the hydrothermal plume near 6°48′N, Carlsberg Ridge, Northwest Indian Ocean [J]. Journal of Marine Sciences, 2017, 35(4): 34-43. |
[5] | ZHAO Dong-yang, LEI Li-yuan, YOU Guang-ran, LIU Ming, XI Xiao-hui, BI Yuan-pu. Application of GIS and Lorenz Curve to study the spatial distribution characteristics of islands in Liaoning Province [J]. Journal of Marine Sciences, 2017, 35(1): 73-79. |
[6] | HU Hao, XU Dong, LONG Jiang-ping, ZHOU Meng-jia, TANG Bo, JIN Lu. Quantitative analysis of BP neural network on the relationships between ∑REE content and impact factors in Beibu Gulf [J]. Journal of Marine Sciences, 2016, 34(1): 18-26. |
[7] | YUAN Qi-xiang, LI Jia-lin, XU Liang-hui, CHEN Peng-cheng, WANG Ming-yue. Quantitative analysis of river morphological features in Xiangshan Bay Basin [J]. Journal of Marine Sciences, 2014, 32(3): 50-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||