[1] CORLISS J B, DYMOND J, GORDON L I, et al. Submarine thermal springs on the Galapagos Rift[J]. Science, 1979, 203(4 385): 1 073-1 083. [2] BAKER E T, GERMAN C R. On the global distribution of hydrothermal vent fields[M]// GERMAN C R, LIN J, PARSON L M. Mid-ocean ridge: Hydrothermal interactions between the lithosphere and oceans: Geophysical monography series 148. Washington DC: AGU,2004:245-266. [3] BANERJEE R, RAY D. Metallogenesis along the Indian Ocean Ridge system[J]. Current Science, 2003,85(3):321-327. [4] GERMAN C R, BAKER E T, MEVEL C, et al. Hydrothermal activity along the southwest Indian ridge[J]. Nature, 1998,395(6 701):490-493. [5] MÜNCH U, LALOU C, HALBACH P, et al. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′E—mineralogy, chemistry and chronology of sulfide samples[J]. Chemical Geology, 2001,177(3-4):341-349. [6] LIN Jian. The first collaborative China-international cruises to investigate mid-ocean ridge hydrothermal vents[J]. InterRidge News, 2006,15:1-3. [7] TAO Chun-hui, LIN Jian, GUO Shi-qin, et al. Discovery of the first active hydrothermal vent field at the ulteraslow spreading Southwest Indian Ridge: The Chinese DYI 15-19 Cruise[J]. Ridge Crest Ridge, 2007,16:25-26. [8] SONG Xue-chun. Which lasted 300 days, accumulated more than 46,000 sea miles sailing—“Da Yang Yi Hao”full return[N]. People′s Daily, 2009-03-18(5). 宋学春.历时300多天,累计航行4.6万多海里——“大洋一号”满载归来[N].人民日报,2009-03-18(5). [9] YU Miao, SU Xin, TAO Chun-hui, et al. Petrological and geochemical features of basalts at 49.6°E and 50.5°E hydrothermal fields along the Southwest Indian Ridge[J]. Geoscience, 2013,27(3):497-508. 于淼,苏新,陶春辉,等.西南印度洋中脊49.6°E和50.5°E区玄武岩岩石学及元素地球化学特征[J].现代地质,2013,27(3):497-508. [10] YE Jun, SHI Xue-fa, YANG Yao-min. Hydrothermal sulfide mineralization from ultraslow-spreading Southwest Indian Ridge near 49.5°E[J]. Acta Mineralogica Sinica, 2009,29(1):382-383. 叶俊,石学法,杨耀民.西南印度洋超慢速扩张脊49.5°E热液区热液硫化物成矿作用研究[J].矿物学报,2009,29(1):382-383. [11] TAO Chun-hui, LI Huai-ming, HUANG Wei, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011,56(26):2 828-2 838. 陶春辉,李怀明,黄威,等.西南印度洋脊49°39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义[J].科学通报,2011,56(28-29):2 413-2 423. [12] GEORGEN J E, KURZ M D, DICK H J B, et al. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge(10-24°E)[J]. Earth and Planetary Science Letters, 2003,206(3-4):509-528. [13] YE Jun, SHI Xue-fa, YANG Yao-min, et al. Geological characteristics and mineralization of polymetallic sulfide in ultraslow-spreading ridges: Example as Southwest Indian Ridge[J]. Journal of Central South University: Science and Teachnology, 2011,42(2):34-38. 叶俊,石学法,杨耀民,等.超慢速扩张脊地质特征与多金属硫化物成矿探讨——以西南印度洋脊研究为例[J].中南大学学报:自然科学版,2011,42(2):34-38. [14] SAUTER D, CANNAT M, MEYZEN C, et al. Propagation of a melting anomaly along the ultra-slow Southwest Indian Ridge between 46°E and 52°20′E: Interaction with the Crozet hot-spot[J]? Geophysical Journal International, 2009,179(2):687-699. [15] TAO Chun-hui, LIN Jian, GUO Shi-qin, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology, 2011,12(20):47-50. [16] GILL R. Igneous rocks and processes: A practical guide[M]. Oxford: Wiley-Blackwell, 2011:26-28. [17] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989,42(1):313-345. [18] CAO Hong. Hydrothermal mineralization and geological and geochemical characteristics of SWIR[D]. Qingdao: Ocean University of China, 2010. 曹红.西南印度洋中脊热液成矿作用及其地质地球化学研究[D].青岛:中国海洋大学,2010. [19] NOLL P D, NEWSOM H E, LEEMAN W P, et al. The role of hydrothermal fluids in the production of subduction zone magmas: evidence from siderophile and chalcophile trace elements and boron[J]. Geochimica et Cosmochimica Acta,1996,60(4):587-611. [20] NAKAMURA Kentaro, KATO Yasuhiro, TAMAKI Kensaku, et al. Geochemistry of hydrothermally altered basaltic rocks from the Southwest Indian ridge near the Rodriguez triple junction[J]. Marine Geology, 2007,239(3-4):125-141. [21] ZENG Zhi-gang, WANG Xiao-yuan, ZHANG Guo-liang, et al. Formation of Fe-oxyhydroxides from the East Pacific Rise near latitude 13°N: Evidence from mineralogical and geochemical data[J]. Science in China, 2007,37(10):1 349-1 357. 曾志刚,王晓媛,张国良,等.东太平洋海隆13°N附近Fe-氧羟化物的形成:矿物和地球化学证据[J].中国科学,2007,37(10):1 349-1 357. [22] BOSTRÖM K. The origin and fate of ferromanganese active ridge sediments[J]. Stockholm Contributions in Geology, 1973,27(2):148-243. [23] HEKINIAN R, HOFFERT M, LARQUE P, et al. Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions[J]. Economic Geology, 1993,88(8):2 099-2 121. [24] LIU Yi, PENG Zi-cheng, WEI Gang-jian, et al. Geochemistry of REE in a Porites coral from Sai Kung, Hong Kong and its relationship with sea level rise[J]. Geochimica, 2006,35(5):531-539. 刘弈,彭子成,韦刚健,等.香港西贡滨珊瑚REE的地球化学特征及其与海平面变化的关系[J].地球化学,2006,35(5):531-539. [25] WHEAT C G, MOTTL M J, RUDNICKI M. Trace element and REE composition of a low-temperature ridge-flank hydrothermal spring[J]. Geochimica et Cosmochimica Acta, 2002,66(21):3 693-3 705. [26] BOYNTON W V. Cosmochemistry of the rare earth elements: Meteorite studies[C]//HENDERSON P. Rare earth element geochemistry. Amsterdam: Elsevier, 1984:63-114. [27] LIU Ji-hua. The geochemistry of REEs and Nd isotope in Deep-sea sediments from the Eastern Pacific[D]. QingDao: The Institute of Oceanology, Chinese Academy of Sciences, 2004. 刘季花.东太平洋沉积物稀土元素和Nd同位素地球化学特征及其环境指示意义[D].青岛:中国科学院海洋研究所,2004. [28] DING Zhen-ju, LIU Cong-qiang, YAO Shu-zhen, et al. The rare earth elements compositions of seafloor hydrothermal sediments and its significance[J]. Geological Science and Technology Information, 2000,19(1):27-35. 丁振举,刘丛强,姚书振,等.海底热液沉积物稀土元素组成及其意义[J].地质科技情报,2000,19(1):27-35. [29] BAO Shen-xu, ZHOU Huai-yang, PENG Xiao-tong, et al. Rare earth element geochemistry of hydrothermal sulfide from Endeavour segment, Juan de Fuca Ridge[J]. Geochimica, 2007,36(3):303-310. 包申旭,周怀阳,彭晓彤,等.Juan de Fuca洋脊Endeavour段热液硫化物稀土元素地球化学特征[J].地球化学,2007,36(3):303-310. [30] CHEN Hong, ZHU Ben-duo, CUI Zhao-guo. A study on geological and geochemical characteristics of seafloor hydrothermal polymetallicdeposits[J]. Journal of Tropical Oceanography,2006,25(2):79-84. 陈弘,朱本铎,崔兆国.海底热液矿床地质和地球化学特点研究[J].热带海洋学报,2006,25(2):79-84. [31] LUPTON J E, PYLE D G, JENKINS W J, et al. Evidence for an extensive hydrothermal plume in the Tonga-Fiji region of the South Pacific[J]. Geochemisty Geophyiscs Geosystems, 2004,5(1):1-18. [32] YANG Yao-min, YE Jun, SHI Xue-fa, et al. Mineralogy and geochemistry of submarine metalliferous sediments and significances for hydrothermal activity[J]. Jouranl of Central South University: Science and Technology, 2011,42(2):65-74. 杨耀民,叶俊,石学法,等.海底含金属沉积物矿物学和地球化学及其对热液活动的指示[J].中南大学学报:自然科学版,2011,42(2):65-74. [33] BOSTRÖM K, PETERSON M N A. The origin of aluminum poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise[J]. Marine Geology, 1969,7(5):427-447. |