海洋学研究 ›› 2019, Vol. 37 ›› Issue (2): 28-43.DOI: 10.3969/j.issn.1001-909X.2019.02.004
刘丛舒1,2, 丁巍伟*1,2, 殷绍如1,2, 方鹏高1,2,3, 丁航航1,2,3
收稿日期:
2019-01-28
修回日期:
2019-05-23
出版日期:
2019-06-15
发布日期:
2022-11-15
通讯作者:
*丁巍伟(1977-),男,研究员,主要从事大陆边缘动力学方面的研究。E-mail:wwding@sio.org.cn
作者简介:
刘丛舒(1994-),女,河南安阳市人,主要从事海洋地质方面的研究。E-mail:Luaplant@qq.com
基金资助:
LIU Cong-shu1,2, DING Wei-wei*1,2, YIN Shao-ru1,2, FANG Peng-gao1,2,3, DING Hang-hang1,2,3
Received:
2019-01-28
Revised:
2019-05-23
Online:
2019-06-15
Published:
2022-11-15
摘要: 南海北部陆坡发育众多海底峡谷,其形成、发育、演化过程都存在较大差异。本文选取南海北部陆坡典型的珠江口外海底峡谷群、东沙海底峡谷、台湾浅滩南海底峡谷和澎湖海底峡谷进行研究,通过高分辨率多道地震数据和多波束测深数据,结合前人研究成果,对4条典型海底峡谷的形态特征、沉积充填特征及结构、形成发育过程及控制因素进行研究。结果表明,南海北部陆缘各个海底峡谷的形成受多个控制因素的影响,其影响程度及方式都有差别。构造活动、海平面变化及沉积物重力流与海底峡谷的演化密切相关,而陆地河流和局部构造因素也以不同方式影响着海底峡谷的发育。对于发育在主动大陆边缘的台湾岛东南侧的澎湖海底峡谷,其板块运动和岩浆活动活跃,其上发育的海底峡谷的控制因素以内营力地质作用为主。而具有被动大陆边缘属性的其他3条峡谷,由于构造运动较少或停止,其上发育的海底峡谷的控制因素以外营力地质作用为主。
中图分类号:
刘丛舒, 丁巍伟, 殷绍如, 方鹏高, 丁航航. 南海北部陆坡区海底峡谷地貌、沉积特征及控制因素[J]. 海洋学研究, 2019, 37(2): 28-43.
LIU Cong-shu, DING Wei-wei, YIN Shao-ru, FANG Peng-gao, DING Hang-hang. Geomorphology, sedimentary characteristics and controlling factors of submarine canyons in the northern continental slope of the South China Sea[J]. Journal of Marine Sciences, 2019, 37(2): 28-43.
[1] FARRE J A, MCGREGOR B A, RYAN W B F, et al. Breaching the shelfbreak passage from youthful to mature phase in submarine canyon evolution[J]. Spec Publ Soc Econ Paleontol Mineral, 1983, 33:25-39. [2] HAGEN R A, BERGERSEN D D, MOBERLY R, et al. Morphology of a large meandering submarine canyon system on the Peru-Chile forearc[J]. Marine Geology, 1994, 119(1-2):7-38. [3] KLAUS A, TAYLOR B. Submarine canyon development in the Izu-Bonin Forearc: A SeaMARC II and seismic survey of Aoga Shima Canyon[J]. Marine Geophysical Researches, 1991, 13(2):131-152. [4] HAGEN R A, VERGARA H, NAAR D F. Morphology of San Antonio submarine canyon on the central Chile forearc[J]. Marine Geology, 1996, 129(129):197-205. [5] CIRAC P, BOURILLET J F, GRIBOULARD R, et al. Le canyon de Capbreton: nouvelles approches morphostructurales et morphosédimentaires. Premiers résultats de la campagne ItsasCanyon of Capbreton: new morphostructural and morphosedimentary approaches. First results of the ITSAS cruise[J]. Comptes Rendus De L'académie Des Sciences, 2001, 332(7):447-455. [6] TWICHELL D C, ROBERTS D G. Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson arid Baltimore Canyons[J]. Geology, 1982, 10(8):408. [7] PRATSON L F, RYAN W B F, MOUNTAIN G S, et al. Submarine canyon initiation by downslope-eroding sediment flows: Evidence in late Cenozoic strata on the New Jersey continental slope[J]. Geological Society of America Bulletin, 1994, 106(3):395-412. [8] PRATSON L F, COAKLEY B J. A model for the headward erosion of submarine canyons induced by downslope-eroding sediment flows[J]. Geological Society of America Bulletin, 1996, 108(2): 225-234. [9] MOUNTAIN G S, DAMUTH J E, MCHUGH C M G, et al. Origin, reburial, and significance of a Middle Miocene Canyon, New Jersey Continental Slope1[C]//Proceedings of the Ocean Drilling Program. 1996, 150:283. [10] LAURSEN J, NORMARK W R. Late Quaternary evolution of the San Antonio Submarine Canyon in the central Chile forearc(~33°S)[J]. Marine Geology, 2002, 188(3):365-390. [11] POSAMENTIER H W, KOLLA V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings[J]. Journal of Sedimentary Research, 2003, 73(3): 367-388. [12] KOTTKE B, SCHWENK T, BREITZKE M, et al. Acoustic Facies and depositional processes in the upper submarine canyon swatch of no ground(Bay of Bengal)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(5): 979-1001. [13] OLIVEIRA A, SANTOS A L, RODRIGUES A, et al. Sedimentary particle distribution and dynamics on the Nazare canyon system and adjacent shelf(Portugal)[J]. Mar Geol, 2007, 246(2-4):105-122. [14] GRANATA T C, VIDONDO B, DUARTE C M, et al. Hydrodynamics and particle transport associated with a submarine canyon off Blanes(Spain), NW Mediterranean Sea[J]. Continental Shelf Research, 1999, 19(10): 1 249-1 263. [15] BABONNEAU N, SAVOYE B, CREMER M, et al. Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan[J]. Mar Petrol Geol, 2002, 19(4):445-467 [16] GAY A, LOPEZ M, BERDNT C, et al. Geological controls on focused fluid flow associated with seafloor seeps in the lower Congo Basin[J]. Mar Geol, 2007, 244(1-4): 68-92. [17] LIU Bao-hua, LI Xi-shuang, ZHAO Yue-xia, et al. Debris transport on the western continental slope of the Okinawa Trough: Slumping and gravity flowing[J]. Oceanologia et Limnologia Sinica, 2005, 36(1): 1-9. 刘保华, 李西双, 赵月霞, 等. 冲绳海槽西部陆坡碎屑沉积物的搬运方式:滑塌和重力流[J]. 海洋与湖沼, 2005, 36(1): 1-9. [18] PALANQUES A, MADRON X D D, PUIG P, et al. Suspended sediment fluxes and transport processes in the Gulf of Lions submarine canyons. The role of storms and dense water cascading[J]. Marine Geology, 2006, 234(1-4):43-61. [19] LI Wei-ran, YANG Zuo-sheng, WANG Qi, et al. Terrigenous transportation through canyon and sedimentation of submarine fan in the Okinawa Trough[J]. Oceanologia et Limnologia Sinica, 2001, 32(4): 380-385. 李巍然, 杨作升, 王琦, 等. 冲绳海槽陆源碎屑峡谷通道搬运与海底扇沉积[J]. 海洋与湖沼, 2001, 32(4): 380-385. [20] PENG Da-jun, CHEN Chang-min, PANG Xiong, et al. Discovery of deep-water fan system in South China Sea[J]. Acta Petrolei Sinica, 2004, 25(5): 17-23. 彭大钧, 陈长民, 庞雄, 等. 南海珠江口盆地深水扇系统的发现[J]. 石油学报, 2004, 25(5): 17-23. [21] SU Ming, XIE Xi-nong, XIE Yu-hong, et al. The segmentations and the significances of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea[J]. Journal of Asian Earth Sciences, 2014, 79:552-563. [22] XU Dong-yu. Chinese offshore geology[M]. Beijing: Geological Publishing House, 1997: 77. 许东禹. 中国近海地质[M]. 北京: 地质出版社, 1997: 77. [23] WANG Hui-zhong. Sedimentological indicators forcontour current in sediments of Hatton and Gardar Drifts, N. E. Atlantic Ocean[J]. Scientia Geologica Sinica, 1991(4):346-358. 王慧中. 北大西洋Hatton与Gardar沉积堤上等深线流活动的沉积学标志[J]. 地质科学, 1991(4):346-358. [24] CHEN Wen-bin. Radiolaria in surface sediments in the South China Sea[J]. Donghai Marine Science, 1987,5(1-2):60-76. 陈文斌. 南海中部表层沉积物中的放射虫[J]. 东海海洋, 1987,5(1-2):60-76. [25] ZHANG Wei-yan, ZHANG Fu-yuan, ZHANG Xiao-yu. Characteristics of turbidity deposits from sediment cores in Eastern South China Sea[J]. Journal of Tropical Oceanography, 2003, 22(3): 37-44. 章伟艳, 张富元, 张霄宇. 南海东部海域柱样沉积物浊流沉积探讨[J]. 热带海洋学报, 2003, 22(3): 37-44. [26] JIN Qing-huan. Geology and petroleum gas resources of South China Sea[M]. Beijing: Geological Publishing House, 1989. 金庆焕. 南海地质与油气资源[M]. 北京:地质出版社, 1989. [27] WU Lu-shan, BAO Cai-wang. Types and characteristics of potential subbottom geological hazards in the northeastern South China Sea[J]. South China Sea Geology Research, 2000(12): 87-101. 吴庐山, 鲍才旺. 南海东北部海底潜在地质灾害类型及其特征[J]. 南海地质研究, 2000(12): 87-101. [28] LIU Zhong-chen, LIU Bao-hua, HUANG Zhen-zong, et al. Topography and landforms in China's offshore and adjacent sea area[M]. Beijing: China Ocean Press, 2005. 刘忠臣, 刘保华, 黄振宗, 等. 中国近海及邻近海域地形地貌[M]. 北京:海洋出版社, 2005. [29] XIA Zhen, ZHENG Tao, PANG Gao-cun. Submarine geological disaster factors in the northern South China Sea[J]. Journal of Tropical Oceanography, 1999, 18(4): 91-95. 夏真, 郑涛, 庞高存. 南海北部海底地质灾害因素[J]. 热带海洋学报, 1999, 18(4): 91-95. [30] LIU Xi-qing, LIU Shou-quan, WANG Sheng-jie, et al. Preliminary exploration on the geological development of the South China Sea disaster[J]. The Chinese Journal of Geological Hazard and Control, 2002, 13(1): 12-16. 刘锡清, 刘守全, 王圣洁, 等. 南海灾害地质发育规律初探[J]. 中国地质灾害与防治学报, 2002, 13(1): 12-16. [31] HAN Xi-bin, LI Jia-biao, XU Dong, et al. Development of research on submarine canyon in China[J]. Marine Geology Letters, 2010, 26(2): 41-48. 韩喜彬, 李家彪, 许冬, 等. 我国海底峡谷研究进展[J]. 海洋地质动态, 2010, 26(2): 41-48. [32] CHUNANG Ching-yao, YU Ho-shing. MorPhology and canyon forming processes of upper reach of the Penghu Submarine Canyon off Southwestern Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2002, 13(1):18. [33] YU Ho-shing, CHANG Jen-fu. The Penghu Submarine Canyon off Southwestern Taiwan: Morphology and origin[J]. Terrestrial Atmospheric & Oceanic Sciences, 2002, 13(4): 547-562. [34] YU Ho-shing, CHIANG Cheng-shing, SHEN Su-ming. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping(Kaoping) Submarine Canyon[J]. Journal of Marine Systems, 2009, 76(4):369-382. [35] DING Wei-wei, LI Ming-bi, ZHAO Li-hong, et al. Cenozoic tectono-sedimentary characteristics and extension model of the Northwest Sub-basin, South China Sea[J]. Earth Science Frontiers, 2009, 16(4):147-156. 丁巍伟, 黎明碧, 赵俐红, 等, 南海西北次海盆新生代构造-沉积特征及伸展模式探讨[J]. 地学前缘, 2009,16(4):147-156. [36] YAO Bo-chu, WAN Ling. Variation of the lithospheric thickness in the South China Sea area and its tectonic significance[J]. Geology in China, 2010, 37(4):888-899. 姚伯初, 万玲. 南海岩石圈厚度变化特征及其构造意义[J]. 中国地质, 2010, 37(4):888-899. [37] HILDE T W C, UYEDA S, KROENKE L. Evolution of the Western Pacific and its margin[J]. Tectonophysics, 1977, 38(1-2): 145-165 [38] TAYLOR B, HAYES D E. Origin and history of the South China Sea Basin[J]. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, 1983, 27: 23-56. [39] ZHOU Di, RU Ke, CHEN Han-zong, et al. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 1995, 251(1-4):161-177. [40] CLIFT P, LIN J. Preferential mantle lithospheric extension under the South China margin[J]. Marine and Petroleum Geology, 2001, 18(8):929-945. [41] TAYLER B, HAYES D E. The tectonic evolution of the South China Basin[M]∥HAYES D E. The tectonic and geologic evolution of Southeast Asian Seas and Islands. Washington D C:Am Geophys Union, 1980:89-104. [42] BRIASIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Geophys Res, 1993, 98(B4):6 299-6 328. [43] LI Chun-feng , XU Xing , LIN Jian , et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry Geophysics Geosystems, 2014, 15(12):4 958-4 983. [44] SUN Zhen, JIAN Zhi-ming, STOCK J M, et al. Expedition 367/368 methods[R]//Proceedings of the International Ocean Discovery Program, 2018, doi: 10.14379/iodp.proc.367368.102.2018. [45] LIU Zhi-fei, ZHAO Yu-long, COLIN C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238-273. [46] DADSON S J, HOVIUS N, CHEN H, et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen[J]. Nature, 2003, 426(6 967):648-651. [47] MILLIMAN J D, FARNSWORTH K L. River discharge to the coastal ocean: A global synthesis[M]. Cambridge: Cambridge University Press, 2013. [48] PANG Xiong, YANG Shao-kun, ZHU Ming, et al. Deep-water fan systems and petroleum resources on the northern slope of the South China Sea[J]. Acta Geologica Sinica, 2004, 78(3): 626-631. [49] WU Jia-peng, WANG Ying-min, XU Qiang. A depositional model of submarine canyons in Baiyun Sag, Pearl River Mouth Basin[J]. Marine Geology Frontiers, 2011(8):26-31. 吴嘉鹏, 王英民, 徐强. 珠江口盆地白云凹陷海底峡谷沉积模式[J]. 海洋地质前沿, 2011(8):26-31. [50] SUN Zhen, PANG Xiong, ZHONG Zhi-hong, et al. Dynamics of tertiary tectonic evolution of the Baiyun Sag in the Pearl River Mouth Basin[J]. Earth Science Frontiers, 2005, 12(4): 489-498. 孙珍, 庞雄, 钟志洪, 等. 珠江口盆地白云凹陷新生代构造演化动力学[J]. 地学前缘, 2005, 12(4): 489-498. [51] DING Wei-wei, LI Jia-biao, FANG Yin-xia, et al. Morphotectonics and evolutionary controls on the Pearl River Canyon system, South China Sea[J]. Marine Geophysical Research, 2013, 34(3-4): 221-238. [52] HUANG Chun-jü, ZHOU Di, CHEN Chang-min, et al. Deep crustal structure of Baiyun sag revealed by deep reflection seismic section[J]. Chinese Science Bulletin, 2005, 50(10):1 024-1 031. 黄春菊, 周蒂, 陈长民, 等. 深反射地震剖面所揭示的白云凹陷的深部地壳结构[J]. 科学通报, 2005, 50(10):1 024-1 031. [53] LIU Bao-jun, YUAN Li-zhong, SHEN Jun, et al. Northern continental slope palaeogeomorphology and deep-water fan system response of Pearl River Since 13.8 Ma,South China Sea[J]. Acta Sedimentologica Sinica, 2006, 24(4):476-482. 柳保军, 袁立忠, 申俊, 等.南海北部陆坡古地貌特征与13.8 Ma 以来珠江深水扇[J]. 沉积学报, 2006, 24(4):476-482. [54] PANG Xiong, CHEN Chang-min, PENG Da-jun, et al. Pearl River deep water fan system and petroleum and gas, South China Sea[M]. Beijing: Science Press, 2007: 45-48. 庞雄, 陈长民, 彭大钧, 等. 南海珠江深水扇系统及油气[M]. 北京: 科学出版社, 2007: 45-48. [55] DING Wei-wei, LI Jia-biao, LI Jun, et al. Formation process and controlling factors of the Pearl River Canyon in the South China Sea[J]. Journal of Tropical Oceanography, 2013, 32(6): 63-72. 丁巍伟, 李家彪, 李军, 等. 南海珠江口外海底峡谷形成的控制因素及过程[J]. 热带海洋学报, 2013, 32(6): 63-72. [56] YIN Shao-ru, WANG Liao-liang, GUO Yi-qun, et al. Morphology, sedimentary characteristics, and origin of the Dongsha submarine canyon in the northeastern continental slope of the South China Sea[J]. Science China: Earth Sciences, 2015, 58(6): 971-985. 殷绍如, 王嘹亮, 郭依群, 等. 东沙海底峡谷的地貌沉积特征及成因[J]. 中国科学:地球科学, 2015, 58(6): 971-985. [57] SCHWENK T, SPIEß V, BREITZKE M, et al. The architecture and evolution of the Middle Bengal Fan in vicinity of the active Channel-Levee system imaged by high-resolution seismic data[J]. Mar Pet Geol, 2005, 22(5): 637-665. [58] DYKSTRA M, KNELLER B. Canyon San Fernando, Baja California, Mexico: A deep-marine channel-levee complex that evolved from submarine canyon confinement to unconfined deposition[J]. AAPG Studies in Geology, 2007, 56: 226-230. [59] KUANG Zeng-gui, ZHONG Guang-fa, Wang Liao-liang, et al. Channel-related sediment waves on the eastern slope offshore Dongsha islands, northern South China Sea[J]. Asian Earth Sci, 2014, 79: 540-551. [60] HAQ B U, HARDENBOL J, VAIL P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793): 1 156-1 167. [61] MILLER K G, KOMINZ M A, BROWNING J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1 293-1 298. [62] KURT H, DEMIRBAG E, KU UI·. Active submarine tectonism and formation of the gulf of saros, northeast Aegean Sea, inferred from multi-channel seismic reflection data[J]. Mar Geol, 2000, 165(1-4): 13-26. [63] DE RUIG M J, HUBBARD S M. Seismic facies and reservoir characteristics of a deep-marine channel belt in the Molasse Foreland Basin, Puchkirchen formation, Austria[J]. AAPG Bull, 2006, 90(5): 735-752. [64] HSU Shu-kun, YEH Yi-ching, DOO Wen-bin, et al. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications[J]. Mar Geophys Res, 2004, 25(1-2): 29-44. [65] DING Wei-wei, LI Jia-biao, HAN Xi-qiu, et al. Geomorphology, grain-size charicteristics, matter source and forming mechanism of sediment waves on the ocean bottom of the northeast South China Sea[J]. Acta Oceanologica Sinica, 2010, 32(2): 96-105. 丁巍伟, 李家彪, 韩喜球, 等. 南海东北部海底沉积物波的形态、粒度特征及物源、成因分析[J]. 海洋学报, 2010, 32(2): 96-105. [66] ZHOU D, RU K, CHEN H Z. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 1995, 251(1): 161-177. [67] BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Geophysical Res, 1993, 98(B4): 6 299-6 328. [68] PANG Xiong, CHEN Chang-min, SHI He-sheng, et al. Response between relative sea-level change and the Pearl River deep-water fan system in the South China Sea[J]. Earth Science Frontiers, 2005, 12(3): 167-177. 庞雄, 陈长民, 施和生, 等. 相对海平面变化与南海珠江深水扇系统的响应[J]. 地学前缘, 2005, 12(3): 167-177. [69] DING Wei-wei, LI Ming-bi, HE Ming, et al. Cenozoic Tectono- sedimentary evolution in the Middle Part of Northern Continental Shelf- Slope Region, South China Sea[J]. Geological Journal of China Universities, 2009, 15(3): 339-350. 丁巍伟, 黎明碧, 何敏, 等. 南海中北部陆架-陆坡区新生代构造-沉积演化[J]. 高校地质学报, 2009, 15(3): 339-350. [70] HSU Shu-kun, LIU Char-shine, SHYU Chuen-tien, et al. New gravity and magnetic anomaly maps in the Taiwan-Luzon region and their preliminary interpretation[J]. T.A.O. 1998, 9(3): 509-532. [71] SIBUET C S, HSU Shu-kun. How was Taiwan created[J]. Tectonophysics, 2004, 379(1-4): 159-181. [72] LI Chun-feng, ZHOU Zu-yi, LI Jia-biao, et al. Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications[J]. Marine Geophysical Researches, 2007, 28(1): 59-79. [73] YEH Y, HSU S. Crustal structures of the northernmost South China Sea: Seismic reflection and gravity modeling[J]. Marine Geophysical Researches, 2004, 25(1-2): 45-61. [74] HUANG Zehn-yi. Sedimentation and evolution of Kaoping Slope Basin and Penghu Submarine Canyon-Channel System off southwest Taiwan[D]. Taipei: Institute of Oceanography, National Taiwan University, 2006. 黃任億. 台灣西南海域高屏陸坡盆地及澎湖海底峽谷-水道系統的沉積作用及演化[D]. 臺北: 臺灣大學海洋研究所, 2006. [75] HUANG Zehn-yi, YU Ho-shing. Morphology and geologic implications of Penghu Channel off south-west Taiwan[J]. Terrestrial Atmospheric & Oceanic Sciences, 2003, 14(4): 469-485. [76] DING Wei-wei, CHENG Xiao-gan, CHEN Han-lin, et al. Geological characteristics and tectonic mechanism of Taiwan Accretionary Prism: Evidences from a multi-channel seismic profile of a "973" Survey[J]. Journal of Tropical Oceanography, 2005, 24(5): 53-59. 丁巍伟, 程晓敢, 陈汉林, 等, 台湾增生楔的构造单元划分及其变形特征[J]. 热带海洋学报, 2005, 24(5): 53-59. [77] GENG Wei, ZHANG Xun-hua, WEN Zhen-he, et al. A review on response of arc-continent collision in coastal range, Eastern Taiwan Island[J]. Geological Review, 2013, 59(1): 129-136. 耿威, 张训华, 温珍河, 等, 台湾东部海岸山脉对弧陆碰撞的响应[J]. 地质论评, 2013, 59(1): 129-136. [78] CHEN Guan-yu. Structures, physiography and development of the Penghu submarine Canyon off southwest Taiwan[D]. Taoyuan: The Institute of Geophysics, Central University, 2006. 陳冠宇. 台灣西南外海之構造與地形特徵及澎湖海底峽谷演化[D]. 桃园:中央大學地球物理研究所, 2006. [79] LU Jia-yu, XU Jing-hua. Tectonic evolution of the orogenic belt in Taiwan[J]. Offshore Oil, 1993, 13(6): 23-32. 卢佳遇, 许靖华. 台湾造山带的大地构造演化[J]. 海洋石油, 1993, 13(6): 23-32. [80] NIE Xin, LUO Wei-dong, ZHOU Jiao, et al. Depositional characteristics of The Penghu Submarine Canyon in the northeastern South China Sea[J]. Marine Geology Frontiers, 2017, 33(8): 18-23. [81] WANG Hai-rong, WANG Ying-min, QIU Yan, et al. Development and its tectonic activity's origin of turbidity current sediment wave in Manila Trench, the South China Sea[J]. Acta Sedimentologica Sinica, 2008, 26(1): 39-45. 王海荣, 王英民, 邱燕, 等. 南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制[J]. 沉积学报, 2008, 26(1): 39-45. [82] LABERG J S, VORREN T O, DOWDESWELL J A, et al. The Andya Slide and the Andya Canyon, north-eastern Norwegian-Greenland Sea[J]. Mar Geology, 2000, 162(2-4): 259-275. [83] PRATSON L F, COAKLEY B J. A model for the headward erosion of submarine canyons induced by downslope-eroding sediment flows[J]. GSA Bull, 1996, 108(3): 225-234. [84] POSAMENTIER H W. Stratigraphy and geomorphology of deep-water mass transport complexes based on 3D seismic data[J]. Society of Exploration Geophysicists, 2004.Doi: 10.4043/16740-MS. [85] POSAMENTIER H W, WALKER R G. Facies models revisited, society for sedimentary geology[M]. Tulsa, Oklahoma: Society for Sedimentary Geology, 2006. [86] DING Wei-wei, LI Jia-biao, HAN Xi-qiu, et al. Morphotectonics and formation of the Taiwan Bank Canyon, Southwest offshore Taiwan Island[J]. Journal of Oceanography & Marine Science, 2010, 14(4): 65-78. [87] ZHAO Yun , YANG Shou-ye , LIU J T, et al. Reconstruction of silicate weathering intensity and paleoenvironmental change during the late Quaternary in the Zhuoshui River catchment in Taiwan[J]. Quaternary International, 2017, 452: 43-53. [88] YANG Shou-ye, YIN Ping. Changes in natural environment and human activities source sink process of sediments in small and medium rivers[J]. Marine Geology and Quaternary Geology, 2018, 38(1): 1-10. 杨守业, 印萍. 自然环境变化与人类活动影响下的中小河流沉积物源汇过程[J]. 海洋地质与第四纪地质, 2018, 38(1): 1-10. [89] GAO Jin-juan. Study on the variation of sand flux in mountainous rivers in western Taiwan Island[D]. Shanghai: East China Normal University, 2017. 高近娟. 台湾岛西部山地型河流入海水沙通量变化研究[D]. 上海:华东师范大学, 2017. [90] LUAN Xi-wu, ZHANG Liang, PENG Xue-chao. Dongsha erosive channel on northern South China Sea shelf and its induced Kuroshio South China Sea branch[J]. Science China Earth Sciences, 2012, 55(1): 149-158. [91] EMERY K O. Continental margins; classification and petroleum prospects[J]. AAPG Bulletin, 1980, 64(3): 297-315. [92] UCHUPI E, EMERY K O. Genetic global geomorphology: a prospectus[M]//OSBORNE R H. From shoreline to abyss: Contributions in marine geology in honor of Francis Parker Shepard. Tulsa, Oklahoma: SEPM Special Publication, 1991:273-290. [93] HARRIS P T, WHITEWAY T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins[J]. Marine Geology, 2011, 285(1): 69-86. [94] HAROLD G R, RICHARDS M. Turbidite systems in deep-water basin margins classified by grain size and feeder system[J]. Aapg Bulletin, 1994, 78(5): 792-822. |
[1] | 周益飞, 廖光洪. 基于GHSOM网络的南海风场时空变化特征分析[J]. 海洋学研究, 2022, 40(2): 19-31. |
[2] | 王维扬, 唐勇, 任建业, 李赫, 赵阳慧, 方银霞, . 南海西南次海盆被动陆缘构造单元划分及伸展演化过程[J]. 海洋学研究, 2021, 39(3): 31-43. |
[3] | 张从伟, 瞿洪宝, 熊元凯, 韩孝辉, 龙根元, 仝长亮, . 三亚近岸海域表层沉积物微量元素地球化学特征[J]. 海洋学研究, 2021, 39(3): 72-83. |
[4] | 陈莹, 赵辉, . 南海中西部叶绿素时空变化特征分析[J]. 海洋学研究, 2021, 39(3): 84-94. |
[5] | 王雁冰, 韩喜彬, 胡智龙, 赵宁, 阳凡林, 葛倩, 许冬, 高金耀, . 亚洲大陆边缘海底峡谷的形态、分布及演化进程[J]. 海洋学研究, 2020, 38(4): 48-57. |
[6] | 陆怡, 初凤友, 董彦辉, 朱志敏, 朱继浩, 鲁江姑. 南海东北部陆坡结核成因及对冷泉活动的指示[J]. 海洋学研究, 2020, 38(2): 16-25. |
[7] | 粟丽, 陈作志, 黄梓荣, 许友伟. 2015年春季南海北部陆架海域网采浮游植物群落结构及其与环境因子关系[J]. 海洋学研究, 2019, 37(3): 86-96. |
[8] | 李海龙, 吴招才, 许明炬. 南海东北部陆缘地壳结构特征及下地壳高速层成因[J]. 海洋学研究, 2019, 37(2): 44-56. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||