[1] LEVITUS S. Climatological atlas of the world ocean[R]//NOAA professional paper. Washington, D. C: US Government Printing Office, 1982, 13:173. [2] BOYER T P, STEPHENS C, ANTONOV J I, et al. World ocean atlas 2001, vol. 2: Salinity [R]//LEVITUS S. NOAA Atlas NESDIS 50. Washington, D. C: US Government Printing Office, 2002: 165. [3] LOCARNINI R A, MISHONOV A V, ANTONOV J I, et al. World ocean atlas 2005, vol. 1: Temperature[R]//LEVITUS S. NOAA Atlas NESDIS 61. Washington D. C: US Government Printing Office, 2006: 182. [4] LOCARNINI R A, MISHONOV A V, ANTONOV J I, et al. World ocean atlas 2009, vol. 1: Temperature[R]//LEVITUS S. NOAA Atlas NESDIS 68. Washington D. C: US Government Printing Office, 2010: 184. [5] LOCARNINI R A, MISHONOV A V, ANTONOV J I, et al. World ocean atlas 2013, vol. 1: Temperature[R]//LEVITUS S. NOAA Atlas NESDIS 73. Washington D C: U S Government Printing Office, 2013:40. [6] ROEMMICH D, GILSON J. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program[J]. Progress in Oceanography, 2009, 82(2): 81-100. [7] KOLODZIEJCZYK N, ANNAIG P M, GAILLARD F. ISAS-15 temperature and salinity gridded fields[DB/OL]. Seanoe, 2017. http://doi.org/10.17882/52367. [8] WANG Bin. International Pacific Research Center April 2016-March 2017[R]. School of Ocean and Earth Science and Technology University of Hawaii at Mānoa, 2017: 1-14. [9] HOSODA S T, NAKAMURA T O. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations[R]. Jamstec Report of Research & Development, 2008, 8:47-59. [10] WANG Hui-zan, WANG Gui-hua, ZHANG Ren, et al. User’s manual of Argo gridded salinity product (G-Argo)[Z/OL]. Hangzhou: State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, 2010. http://www.argo.org.cn/argo_success/demostration/demostration1.html. 王辉赞, 王桂华, 张韧, 等. Argo网格化盐度产品(G-Argo)用户手册[Z/OL].杭州:卫星海洋环境动力学国家重点实验室,国家海洋局第二海洋研究所, 2010. http://www.argo.org.cn/argo_success/demostration/demostration1.html. [11] YAN Chang-xian, ZHU Jian, XIE Ji-pin. An ocean reanalysis system for the joining area of Asia and Indian-Pacific ocean[J]. Atmopheric and Oceanic Sciene Letters, 2010, 3(2):81-86. [12] HAN Gui-jun, WU Xin-rong, LI Wei. Argo grid product user manual[Z]. Tianjin: National Ocean Information Center, 2011. 韩桂军, 吴欣荣, 李威. Argo网格化产品用户手册[Z]. 天津: 国家海洋信息中心, 2011. [13] LI Hong, XU Jian-ping, LIU Zeng-hong, et al. Study on the global ocean Argo gridded dataset and its validation community in coastal waters of Yantai[J]. Marine Science Bulletin, 2013, 32(6): 615-625. 李宏, 许建平, 刘增宏, 等. 全球海洋Argo网格资料集及其验证[J]. 海洋通报, 2013, 32(6): 615-625. [14] LU Shao-lei, LI Hong, LIU Zeng-hong, et al. Global ocean Argo grid dataset (BOA_Argo) user manual[Z]. Hangzhou: China Argo Real-Time Data Center, 2018. 卢少磊, 李宏, 刘增宏, 等. 全球海洋Argo网格资料集(BOA_Argo)用户手册[Z]. 杭州: 中国Argo实时资料中心, 2018. [15] KALNAY E. Atmospheric modeling, data assimilation and predictability[M]. Cambridge: Cambridge University Press, 2003. [16] CRESSMAN G P. An operational objective analysis system[J]. Monthly Weather Review, 1960, 87(10):367-374. [17] ZHANG Chun-ling, WANG Zhen-feng, LI Hong. Argo data grid experiment based on optimal interpolation[J]. Hydrographic Surveying and Charting, 2012, 3(32): 29-31. 张春玲, 王振峰, 李宏. 基于最优插值法的Argo数据网格化试验[J]. 海洋测绘, 2012, 3(32): 29-31. [18] AKIMA H. A new method for interpolation and smooth curve fitting based on local procedures[J]. Journal of the Association for Computing Machinery, 1970, 17(4): 589-602. [19] ZHANG Chun-ling, XU Jian-ping, BAO Xian-wen, et al. An effective method for improving the accuracy of Argo objective analysis[J]. Acta Oceanlolgical Sinica, 2013, 32(7): 66-77. [20] ZHANG Chun-ling, XU Jian-ping, BAO Xian-Wen, et al. Gradient-dependent correlation scale method based on Argo[J]. Journal of PLA University of Science and Technology, 2015, 16(5): 476-48. 张春玲, 许建平, 鲍献文, 等. 基于Argo资料的梯度依赖相关尺度方法[J]. 解放军理工大学学报, 2015, 16(5): 476-48. [21] BEHRIONER D W, MING J, ANTS L. An improved coupled method for ENSO prediction and implications for ocean initialization: Part I: The Ocean Data Assimilation System[J]. Monthly Weather Review, 1998, 126: 1 013-1 021. [22] CHU P C, FAN C, LIU W T. Determination of vertical thermal structure from sea surface temperature[J]. Journal of Atmospheric & Oceanic Technology, 2000, 17(7): 971-979. [23] CHU P C, FAN C W. Maximum angle method for determining mixed layer depth from seaglider data[J]. Journal of Oceanography, 2011, 67(2): 219-230. [24] ZHANG Chun-ling, XU Jian-ping, BAO Xian-Wen, et al. Estimation of Argo sea subsurface temperature based on a thermal parametric model[J]. Marine Science Bulletin, 2014, 33(1): 16-26. 张春玲, 许建平, 鲍献文, 等. 基于海温参数模型推算Argo表层温度[J]. 海洋通报, 2014, 33(1): 16-26. [25] YANG Sheng-long, MA Jun-jie, WU Yu-mei, et al. Relationship between temporal-spatial distribution of fishing grounds of bigeye tuna(Thunnus obesus)and thermocline characteristics in the Atlantic Ocean[J]. Acta Ecologica Sinica, 2015, 35(3): 1-9. [26] LIU Yong, CHEN Xin-jun. Spatio-temporal distribution of Thunnus albacares and its relationship with sea surface temperature in the tuna purse seine fishery of the Central and Western Pacific[J]. Marine Fisheries, 2007, 29(4): 296-301. 刘勇, 陈新军. 中西太平洋金枪鱼围网黄鳍金枪鱼产量的时空分布及与表温的关系[J]. 海洋渔业, 2007, 29(4): 296-301. [27] YANG Sheng-long, ZHANG Bian-bian, JIN Shao-fei, et al. Relationship between the temporal-spatial distribution of longline fishing grounds of yellowfin tuna (Thunnus albacares)and the thermocline characteristics in the Western and Central Pacific Ocean[J].Haiyang Xuebao, 2015, 37(6): 78-87. 杨胜龙, 张忭忭, 靳少非, 等. 中西太平洋延绳钓黄鳍金枪鱼渔场时空分布与温跃层关系[J]. 海洋学报, 2015, 37(6): 78-87. |