海洋学研究 ›› 2023, Vol. 41 ›› Issue (3): 73-82.DOI: 10.3969/j.issn.1001-909X.2023.03.007
收稿日期:
2022-10-27
修回日期:
2023-05-05
出版日期:
2023-09-15
发布日期:
2023-10-24
通讯作者:
*宋时春(1988—),女,高级工程师,主要从事海岸防护工程设防标准研究,E-mail: 61306808@qq.com。
作者简介:
刘桂林(1973—),男,黑龙江省哈尔滨市人,教授,主要从事海岸/海洋工程设计标准研究、海洋工程水动力数值模拟。E-mail: liuguilin73@ouc.edu.cn。
基金资助:
LIU Guilin1(), FANG Dan1, SONG Shichun2,*(), LIU Bohu3
Received:
2022-10-27
Revised:
2023-05-05
Online:
2023-09-15
Published:
2023-10-24
摘要:
极值样本的选取和分布模型的确定是设计波高推算中的两个关键环节。使用阈值法选取波高过阈样本作为极值样本时,常用标准风暴长度法对超出量序列进行“去聚类”处理,以使样本符合独立性标准。然而标准风暴长度法中的标准风暴长度需要人为选择,增加了取样结果的不确定性。本文提出了一种自动的标准风暴长度估计方法,并基于该方法选取了粤西海域的波高过阈样本。波高过阈样本具有尖峰、厚尾的统计特征,为了更准确地拟合该样本,本文基于组合模型原理构建了一种新的分布模型——Gumbel-Pareto分布模型,并用该模型进行了粤西海域的设计波高推算,结果表明Gumbel-Pareto分布对波高过阈样本的拟合优度比Gumbel分布和广义Pareto分布更高,可以为大型海洋工程设计波高的确定提供参考。
中图分类号:
刘桂林, 房丹, 宋时春, 刘泊湖. 基于独立样本的设计波高推算及其应用[J]. 海洋学研究, 2023, 41(3): 73-82.
LIU Guilin, FANG Dan, SONG Shichun, LIU Bohu. Calculation of design wave height and its application base on independent sample[J]. Journal of Marine Sciences, 2023, 41(3): 73-82.
样本 | 尾部指数 | 均值/m | 方差/m2 | 偏度/m3 | 峰度/m3 |
---|---|---|---|---|---|
波高过阈样本 | 3.059 | 4.351 | 1.798 | 1.092 | 3.124 |
波高年极值样本 | 9.958 | 4.610 | 2.611 | 0.437 | 2.354 |
表1 样本的主要统计特征量
Tab.1 Main statistical characteristics of samples
样本 | 尾部指数 | 均值/m | 方差/m2 | 偏度/m3 | 峰度/m3 |
---|---|---|---|---|---|
波高过阈样本 | 3.059 | 4.351 | 1.798 | 1.092 | 3.124 |
波高年极值样本 | 9.958 | 4.610 | 2.611 | 0.437 | 2.354 |
样本 | 分布模型 | 参数 | 参数估计值 | K-S检验的p值 |
---|---|---|---|---|
波高过阈 样本 | Gumbel-Pareto 分布 | β | 2.839 | 0.807 |
α | 1.695 | |||
σ | 3.677 | |||
Gumbel 分布 | 尺度 | 0.894 | 0.419 | |
位置 | 3.772 | |||
GPD | 形状 | 0.076 | 0.322 | |
尺度 | 2.120 | |||
位置 | 2.900 | |||
波高年极值 样本 | Gumbel-Pareto 分布 | β | 2.497 | 0.305 |
α | 0.970 | |||
σ | 3.584 | |||
Gumbel 分布 | 尺度 | 1.362 | 0.689 | |
位置 | 3.855 | |||
GPD | 形状 | 0.268 | 0.272 | |
尺度 | 3.110 | |||
位置 | 1.500 |
表2 分布参数估计及K-S检验结果
Tab.2 Results of parameters’ estimation and K-S tests
样本 | 分布模型 | 参数 | 参数估计值 | K-S检验的p值 |
---|---|---|---|---|
波高过阈 样本 | Gumbel-Pareto 分布 | β | 2.839 | 0.807 |
α | 1.695 | |||
σ | 3.677 | |||
Gumbel 分布 | 尺度 | 0.894 | 0.419 | |
位置 | 3.772 | |||
GPD | 形状 | 0.076 | 0.322 | |
尺度 | 2.120 | |||
位置 | 2.900 | |||
波高年极值 样本 | Gumbel-Pareto 分布 | β | 2.497 | 0.305 |
α | 0.970 | |||
σ | 3.584 | |||
Gumbel 分布 | 尺度 | 1.362 | 0.689 | |
位置 | 3.855 | |||
GPD | 形状 | 0.268 | 0.272 | |
尺度 | 3.110 | |||
位置 | 1.500 |
重现期/年 | 设计波高/m | ||
---|---|---|---|
Gumbel-Pareto分布 | Gumbel分布 | GPD | |
20 | 6.037 | 5.904 | 7.646 |
50 | 7.346 | 6.748 | 10.060 |
100 | 8.500 | 7.376 | 11.990 |
500 | 11.890 | 8.821 | 16.910 |
表3 不同分布模型计算的20年、50年、100年和500年一遇设计波高
Tab.3 20-, 50-,100-, 500-year return levels of design wave height calculated by different distribution models
重现期/年 | 设计波高/m | ||
---|---|---|---|
Gumbel-Pareto分布 | Gumbel分布 | GPD | |
20 | 6.037 | 5.904 | 7.646 |
50 | 7.346 | 6.748 | 10.060 |
100 | 8.500 | 7.376 | 11.990 |
500 | 11.890 | 8.821 | 16.910 |
[1] |
LIU G L, LI X, WANG J H, et al. Research on the statistical characteristics of typhoon frequency[J]. Ocean Engineering, 2020, 209: 107489.
DOI URL |
[2] | 殷玉齐, 侯一筠, 冯兴如, 等. 汕尾市引发灾害性海浪的热带气旋特征研究[J]. 海洋与湖沼, 2021, 52(1):66-74. |
YIN Y Q, HOU Y J, FENG X R, et al. Characteristics of tropical cyclones that cause disastrous waves in Shanwei city[J]. Oceanologia et Limnologia Sinica, 2021, 52(1): 66-74. | |
[3] | 自然资源部海洋预警监测司. 2019年中国海洋灾害公报[EB/OL].(2020-05-20) [2022-09-25]. http://www.nmdis.org.cn/hygb/zghyzhgb/2019nzghyzhgb/. |
Marine Early Warning and Monitoring Division of the Ministry of Natural Resources. Bulletin of China marine disaster in 2019[EB/OL].(2020-05-20) [2022-09-25]. http://www.nmdis.org.cn/hygb/zghyzhgb/2019nzghyzhgb/. | |
[4] | 潘冬冬, 周川, 王俊, 等. 粤东近岸深水区周年波浪特征分析[J]. 南方能源建设, 2020, 7(4):34-40. |
PAN D D, ZHOU C, WANG J, et al. Analysis of the annual wave characteristics in the deep water area near the east coast of Guangdong Province[J]. Southern Energy Construction, 2020, 7(4): 34-40. | |
[5] |
CHEN B Y, KOU Y, WANG Y F, et al. Analysis of storm surge characteristics based on stochastic process[J]. AIMS Mathematics, 2021, 6(2): 1177-1190.
DOI URL |
[6] |
SHAO Z X, LIANG B C, LI H J, et al. Study of sampling methods for assessment of extreme significant wave heights in the South China Sea[J]. Ocean Engineering, 2018, 168: 173-184.
DOI URL |
[7] |
LIU G L, YU Y H, KOU Y, et al. Joint probability analysis of marine environmental elements[J]. Ocean Engineering, 2020, 215: 107879.
DOI URL |
[8] |
WANG L P, XU X, LIU G L, et al. A new method to estimate wave height of specified return period[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(5): 1002-1009.
DOI URL |
[9] |
TAWN J A. An extreme-value theory model for dependent observations[J]. Journal of Hydrology, 1988, 101(1-4): 227-250.
DOI URL |
[10] |
SIMIU E, HECKERT N A. Extreme wind distribution tails: A “peaks over threshold” approach[J]. Journal of Structural Engineering, 1996, 122(5): 539-547.
DOI URL |
[11] | 李晓恩. 超阈法-Copula函数在极端水位重现期值计算中的应用研究[D]. 广州: 华南理工大学, 2020. |
LI X E. Research on POT-Copula method in the calculation of extreme water level and its application[D]. Guangzhou: South China University of Technology, 2020. | |
[12] | KIRAN K G, SRINIVAS V V. A mahalanobis distance-based automatic threshold selection method for peaks over threshold model[J]. Water Resources Research, 2021, 57(1): e2020WR027534. |
[13] |
DING J, CHEN X Z. Assessment of methods for extreme value analysis of non-Gaussian wind effects with short-term time history samples[J]. Engineering Structures, 2014, 80: 75-88.
DOI URL |
[14] |
GUEDES SOARES C, SCOTTO M G. Application of the r largest-order statistics for long-term predictions of significant wave height[J]. Coastal Engineering, 2004, 51(5/6): 387-394.
DOI URL |
[15] | GAO H J, WANG L Q, LIANG B C, et al. Estimation of extreme significant wave heights in the Yellow Sea, China[C]// Proceedings of the 28th International Ocean and Polar Engineering Conference.[S.l.]: ISOPE, 2018: 387-391. |
[16] |
CHAPON A, HAMDI Y. A bivariate nonstationary extreme values analysis of skew surge and significant wave height in the English channel[J]. Atmosphere, 2022, 13(11): 1795.
DOI URL |
[17] | HALTAS I. Estimating extreme high still water levels in North San Francisco Bay: Comparison of annual maxima method with direct and indirect methods[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2022, 148(1): 04021040. |
[18] | MARKOVICH N. Nonparametric analysis of univariate heavy-tailed data: Research and practice[M]. New York: Wiley, 2007. |
[19] |
LIU G L, NIE C, KOU Y, et al. Elevation calculation of bottom deck based on stochastic process and compound distribution[J]. Journal of Marine Science and Engineering, 2021, 9(7): 697.
DOI URL |
[20] | 史道济. 实用极值统计方法[M]. 天津: 天津科学技术出版社, 2006:8-70. |
SHI D J. Practical extreme value statistical method[M]. Tianjin: Tianjin Scientific & Technical Publishers, 2006: 8-70. | |
[21] |
CHEN B Y, KOU Y, WU F, et al. Study on evaluation standard of uncertainty of design wave height calculation model[J]. Journal of Oceanology and Limnology, 2021, 39(4): 1188-1197.
DOI |
[22] |
CHEN B Y, KOU Y, ZHAO D, et al. Maximum entropy distribution function and uncertainty evaluation criteria[J]. China Ocean Engineering, 2021, 35(2): 238-249.
DOI |
[23] | HU Y, SCARROTT C. evmix: An R package for extreme value mixture modeling, threshold estimation and boundary corrected kernel density estimation[J]. Journal of Statistical Software, 2018, 84(5): 1-27. |
[24] |
BEHRENS C N, LOPES H F, GAMERMAN D. Bayesian analysis of extreme events with threshold estimation[J]. Statistical Modelling, 2004, 4(3): 227-244.
DOI URL |
[25] |
CARREAU J, BENGIO Y. A hybrid Pareto model for asymmetric fat-tailed data: The univariate case[J]. Extremes, 2009, 12(1): 53-76.
DOI URL |
[26] | LI C, SINGH V P, MISHRA A K. Simulation of the entire range of daily precipitation using a hybrid probability distribution[J]. Water Resources Research, 2012, 48(3): W03521. |
[27] |
MEKONNEN B A, NAZEMI A, MAZUREK K A, et al. Hybrid modelling approach to prairie hydrology: Fusing data-driven and process-based hydrological models[J]. Hydrological Sciences Journal, 2015, 60(9): 1473-1489.
DOI URL |
[28] | FURRER E M, KATZ R W. Improving the simulation of extreme precipitation events by stochastic weather generators[J]. Water Resources Research, 2008, 44(12): W12439. |
[29] | LEADBETTER M R. Extremes and local dependence in stationary sequences[J]. Zeitschrift für Wahrschein-lichkeitstheorie und Verwandte Gebiete, 1983, 65(2): 291-306. |
[30] |
FERRO C A T, SEGERS J. Inference for clusters of extreme values[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2003, 65(2): 545-556.
DOI URL |
[31] |
ALZAATREH A, LEE C, FAMOYE F. A new method for generating families of continuous distributions[J]. METRON, 2013, 71(1): 63-79.
DOI URL |
[32] |
LIU G L, CUI K, JIANG S, et al. A new empirical distribution for the design wave heights under the impact of typhoons[J]. Applied Ocean Research, 2021, 111: 102679.
DOI URL |
[33] |
LIU G L, GAO Z K, CHEN B Y, et al. Study on threshold selection methods in calculation of ocean environmental design parameters[J]. IEEE Access, 2019, 7: 39515-39527.
DOI URL |
[34] | MANDELBROT B B. The variation of certain speculative prices[M]//Fractals and scaling in finance. New York: Springer, 1997: 371-418. |
[35] | MARINHO P R D, SILVA R B, BOURGUIGNON M, et al. Adequacy Model: An R package for probability distributions and general purpose optimization[J]. PLoS One, 2019, 14(8): e0221487. |
[1] | 周昳鸣, 杨立华, 郇彩云, 刘荣. 浙江苍南近岸海域实测波浪特征分析[J]. 海洋学研究, 2023, 41(3): 43-55. |
[2] | 崔明慧, 涂俊彪, 孟令鹏, 郭兴杰, 苏妮, 范代读. 长江口南汇潮滩的波浪特征及其影响因素[J]. 海洋学研究, 2023, 41(2): 28-44. |
[3] | 沈远, 陈相宇, 张希疆, 叶云, 倪云林. 波浪在三维圆形岛地形上的绕射研究[J]. 海洋学研究, 2022, 40(2): 62-68. |
[4] | 陈杰, 龚尚鹏, 官志鑫, 张竹, 谢振东, 雷佳欣, 彭浩. 根、茎、叶定量概化植物模型沿程不规则波消减实验[J]. 海洋学研究, 2019, 37(4): 48-59. |
[5] | 李靖, 郑崇伟, 黎鑫, 罗智贤, 王震, 姚琪. 太平洋涌浪分布特征及其对海-气边界层的影响[J]. 海洋学研究, 2019, 37(2): 1-8. |
[6] | 杨忠良, 叶钦, 欧阳伟, 羊天柱. 斋堂岛东南海域波浪特征及海浪谱分析[J]. 海洋学研究, 2017, 35(2): 91-95. |
[7] | 黄必桂, 石新刚, 谢波涛, 胡琴. 基于实测资料的南海海浪周期关系研究[J]. 海洋学研究, 2016, 34(3): 6-10. |
[8] | 郑崇伟, 林刚, 邵龙潭. 孟加拉湾一次热带气旋过程的海浪场模拟分析[J]. 海洋学研究, 2013, 31(4): 26-31. |
[9] | 王卫远, 何倩倩, 杨娟. 杭州湾海域50年一遇波浪数值模拟研究[J]. 海洋学研究, 2013, 31(4): 44-48. |
[10] | 郑崇伟, 庄卉, 贾本凯, 郭随平. 基于WW3模式的一次台风浪过程中掠海飞行器的击水概率分析[J]. 海洋学研究, 2013, 31(3): 36-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||