红树林、滨海盐沼和海草床是典型的滨海蓝碳生态系统,具有相当可观的固碳能力。植被碳库和沉积物碳库是蓝碳生态系统有机碳的主要载体,其变化过程决定了生态系统的整体固碳能力。本文尝试从碳库相互作用的角度出发,通过文献梳理,总结不同植被碳库之间、不同沉积物碳库之间以及植被碳库和沉积物碳库之间相互作用的研究进展,指出物种竞争、外源碳输入以及生物地貌学过程在碳库相互作用中所起到的重要作用,并提出滨海蓝碳生态系统碳库研究中存在的问题和未来研究的方向。
基于1979—2018年欧洲中期天气预报中心(ECMWF)近海面10 m风场资料,采用增长型分层自组织映射(GHSOM)神经网络方法,对南海海表面风场(SSW)的季节变化和年际异常变化进行了分析,结果表明:(1)GHSOM网络训练原始风场数据第一层结果揭示了4个特征模态,高度概括了南海近海面风场的季节变化特征;第二层结果提取了风场的月变化特征。(2)GHSOM网络训练异常风场数据第一层结果揭示了4类异常风场特征模态:反气旋式异常、气旋式异常、西南风异常和东北风异常模态。其中反气旋式异常和气旋式异常模态呈现出不对称现象,即反气旋式异常风场的振幅大于气旋式异常风场;且这两个模态与ENSO事件密切相关,它们的时间序列与Niño 3.4指数序列存在显著的延迟相关。同时,东北风异常风场模态的发生频率大于西南风异常模态。向下扩展的第二层结果揭露了异常风场模态更多的细节特征。
海表温度是表征海洋表层热力状况的重要海洋参数,日均全天候覆盖的海温观测数据可为服务台风监测及其他海洋灾害时空演变的精细化预报提供数据支撑。可见光红外扫描辐射计和中分辨率光谱成像仪反演的海温产品具有较高的空间分辨率,但是红外遥感反演的海温产品受到云、雾和霾的影响,在云下存在大面积、无规律的缺值;微波辐射计反演的海温产品空间分辨率低,但可穿透云层,实现全天候海温观测。本文基于风云三号B、C、D三颗极轨气象卫星红外和微波遥感仪器反演的海温资料,利用经验正交函数插值法(DINEOF)重构得到全球海表温度产品。与全球分析场日平均海温OISST数据进行比较可知:原始海温资料的均方根误差为0.59~0.70℃,DINEOF重构后海温资料均方根误差降至0.10~0.34℃;相关系数从0.33~0.48提升到0.78~0.98。多传感器重构海温数据空间分布上连续可信,能够监测不同季节的海温变化特征及暖池空间模态。风云三号气象卫星微波遥感的加入显著提升了重构海温的空间连续覆盖率和时间分辨率。
大陆坡脚是大陆边缘的一个重要地形特征,是沿海国扩展其大陆架权利和划定其200海里以外大陆架外部界限的基础,也是大陆架界限委员会审议沿海国划界案时特别关注的重要技术参数。《联合国海洋法公约》第76条大陆架制度的制定源于典型的被动大陆边缘。但由于全球大陆边缘的多样性和复杂性,特别是后期构造活动、沉积作用对大陆边缘的改造与影响,海底地形地貌异常复杂多变,导致大陆坡脚的识别非常困难。加上各沿海国为获得最大范围的外大陆架,对大陆坡脚的相关规定进行有利于自己的解释,使得大陆坡脚的确定成了外大陆架划界中一个颇具争议的热点问题。本文基于对《联合国海洋法公约》和《大陆架界限委员会科学和技术准则》对大陆坡脚的规定,结合不同类型大陆边缘的地质特征和各沿海国划界实践,对陆坡基部区的确定、坡度变化最大之点的选取以及相反证明规则的适用性等问题进行了探讨。
海岸海洋接受大量来自陆源的碳物质和营养盐,涉及大量以碳为中心的相互作用,是重要的碳循环海域;同时,该区域也常发育具有良好圈闭条件的储-盖系统,具有明显的CO2储集潜力。该文以海岸海洋及其下发育的沉积盆地为研究对象,综述了碳物质在海岸海洋中的循环过程、CO2通量的影响因素和海岸海洋沉积盆地的储碳机理。从“双碳”角度,重点论述了海岸海洋在促进CO2负排放方面的意义、促进海洋负碳排放的潜在途径和在沉积盆地的储碳潜力及面临的问题。海岸海洋是重要的碳汇区域之一,高效率的微生物碳泵和碳酸盐碳泵是增强海岸海洋CO2负排放的核心过程;同时,海岸海洋沉积盆地中的储-盖系统,不但提供了额外的CO2封存空间,也保障了CO2封存的安全性。未来的研究应以抑制海岸海洋中碳物质向CO2转化的进程和保障沉积储层中CO2封存的安全性为主要方向,为CO2负排放提供理论依据与技术保障。
滨海盐沼的碳库变化可为蓝碳碳汇核算提供依据。为量化短时间尺度(季节到年际尺度)内滨海盐沼碳库的固碳速率,基于高分辨率的地表高程监测系统,于2022年在杭州湾南岸典型滨海盐沼开展了季节性的观测和采样分析。研究结果表明,在观测期间,本地种海三棱藨草和外来种互花米草的生长呈现季节性变化特征,植物生长主要集中在3—9月。就植物碳库的地下部分而言,海三棱藨草固碳量达到11 g C·m-2,互花米草盐沼则较高,为56 g C·m-2。地表高程监测数据表明,海三棱藨草盐沼的沉积速率为12.30 cm·a-1,略低于互花米草盐沼的沉积速率(13.02 cm·a-1)。结合沉积速率与沉积物容重、有机碳含量等数据,可以算得观测期间,海三棱藨草盐沼沉积物碳埋藏速率为460 g C·m-2·a-1,互花米草盐沼沉积物碳埋藏速率为588 g C·m-2·a-1,这两种滨海湿地的碳埋藏速率也具有季节性,在夏、秋季达到高值。结合植物碳库和沉积物碳库结果可知,杭州湾南岸滨海盐沼生态系统具有较高的固碳速率,外来种生态系统固碳速率(644 g C·m-2·a-1)高于本地种生态系统固碳速率(471 g C·m-2·a-1)。在将来的滨海湿地蓝碳管理工作中,需要考虑不同物种之间的差异性。
随着海洋观测数据和数值模式产品的爆发式增长,人工智能方法在海洋学研究中展现出巨大的潜能。该文首先回顾了海洋大数据科学的发展历程,并详细介绍了人工智能在海洋现象识别、海洋要素与现象预报、海洋动力参数估算、海洋预报误差订正和海洋动力方程求解中的研究现状。具体地,阐述了海洋涡旋、海洋内波和海冰等海洋现象的智能识别研究,海面温度、厄尔尼诺-南方涛动、风暴潮、海浪和海流的智能预测研究,数值模式中海洋湍流过程参数化方案的智能估算研究以及海浪、海流等海洋现象预报误差的智能订正研究。此外,还讨论了物理机制融合和傅里叶神经算子在海洋运动方程智能求解中的研究进展。该文立足于当前人工智能海洋学的发展现状,旨在全面展示人工智能技术在海洋学领域的优势和潜力,并聚焦于海洋数字孪生和人工智能大模型两个新兴的研究热点,展望未来人工智能海洋学的发展方向,为海洋学者提供启示和参考。
近海海湾受人类活动及自然变化影响大,海水碳源汇格局变化影响机制极其复杂。由于海湾空间尺度小,需要使用宽波段的高空间分辨率卫星遥感对海-气CO2通量进行监测评估。相对于传统公里级的水色卫星资料,海-气CO2通量定量估算的关键参数——海表CO2分压(sea surface partial pressure of CO2, pCO2)遥感反演在小尺度海湾具有极大的挑战性。该文以秋季象山港为例,利用走航观测pCO2数据及近5年哨兵2号(Sentinel-2)卫星影像,采用支持向量机(support vector machine, SVM)机器学习的方法,基于Sentinel-2遥感反射率及其比值,建立了海表pCO2的遥感反演算法。算法验证结果显示决定系数为0.92,均方根误差为23.23 μatm,遥感反演结果与实测值具有较高一致性。在此基础上,制作了2017—2021年秋季(9—11月)象山港海表pCO2遥感产品,结果表明,象山港海表pCO2整体上呈现从湾顶向湾口递减的趋势,均值为514.56 μatm,其中,湾内pCO2均值为551.94 μatm,湾外pCO2均值为477.19 μatm,整体呈现为大气CO2的源,且5年间秋季pCO2没有显著趋势性变化。结合多参数走航实测数据分析发现,2021年象山港秋季海表pCO2受物理混合作用及生物活动的共同调控。海表温度(sea surface temperature, SST)与pCO2具有良好的正相关关系,且SST对pCO2的影响主要体现在碳酸盐热力学平衡作用上。此外,平均温度归一化的pCO2(NpCO2)与海水盐度和溶解氧饱和度均具有良好的负相关关系,NpCO2与海水盐度的关系是潮汐作用下湾内和外海水体交换的结果;长时间序列的遥感数据分析也证实湾内、湾外pCO2与平均潮高具有较为一致的变化趋势,且这种趋势在湾外强于湾内。该研究构建了一套海湾小尺度pCO2遥感反演方法,为后续海-气CO2通量大范围、长时序遥感监测奠定了良好基础。
海底天然气水合物藏是天然的巨型碳储藏库,是深部甲烷等烃类气体运移至海底过程中暂时的碳储,是地球碳循环过程的重要一环。冷泉通常与海底天然气水合物藏分解密切相关,是深源或浅层气及水合物分解气在海底发生渗漏的现象。该文根据国内外天然气水合物及冷泉系统勘查的最新动向,综述了与水合物及冷泉流体渗漏相关的羽状流、运移通道、海底微地形地貌等要素的海底原位观测技术,主要包括:走航式及坐底式原位观测、海面及低空渗漏甲烷观测、海底可视化观测、与水合物及冷泉相关的海底观测网络等。综合使用原位观测技术可以更细致、全面地描绘水合物和冷泉系统的时空“景象”,更好地协助厘清海底渗漏甲烷的归趋,拓展人类对深海独特生命绿洲的认知。