Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (3): 92-100.DOI: 10.3969/j.issn.1001-909X.2023.03.009
Previous Articles Next Articles
ZHANG Chuan1,2(), YU Tao1,2, YU Xiaoyan1,2, ZHU Yong3,4, WANG Lifang5, ZHANG Xiaohui1,2
Received:
2023-01-19
Revised:
2023-03-18
Online:
2023-09-15
Published:
2023-10-24
CLC Number:
ZHANG Chuan, YU Tao, YU Xiaoyan, ZHU Yong, WANG Lifang, ZHANG Xiaohui. Preparation of standard reference material for reactive phosphorus with seawater matrix[J]. Journal of Marine Sciences, 2023, 41(3): 92-100.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2023.03.009
Fig.1 The results of optimization of ascorbic acid mass concentration (The error bar on the dot represents the standard deviation of 3 measurement results. The following pictures are the same.)
Fig.2 The results of optimization of ammonium molybdate mass concentration (The numbers near the data point represent the ration of [H+] to [MoO24-].)
CRM | 批次 | CRM特性值 /(μmol·L-1) | 测量值 /(μmol·L-1) | 误差 /(μmol·L-1) |
---|---|---|---|---|
NMIJ7603-a | No.HO135 | 3.10±0.06 | 3.15 | +0.05 |
NMIJ7602-a | No.MO182 | 1.09±0.06 | 1.12 | +0.03 |
Tab.1 The verification results of characterization method accuracy and reliability
CRM | 批次 | CRM特性值 /(μmol·L-1) | 测量值 /(μmol·L-1) | 误差 /(μmol·L-1) |
---|---|---|---|---|
NMIJ7603-a | No.HO135 | 3.10±0.06 | 3.15 | +0.05 |
NMIJ7602-a | No.MO182 | 1.09±0.06 | 1.12 | +0.03 |
序号 | 样品活性磷酸盐浓度测量结果/(μmol·L-1) | |||
---|---|---|---|---|
P1批次 | P2批次 | P3批次 | P4批次 | |
1 | 0.57 | 1.00 | 2.06 | 4.03 |
2 | 0.56 | 1.00 | 2.08 | 4.04 |
3 | 0.57 | 1.01 | 2.07 | 4.02 |
4 | 0.60 | 1.01 | 2.03 | 4.04 |
5 | 0.57 | 1.02 | 2.02 | 4.03 |
6 | 0.57 | 1.02 | 1.99 | 4.06 |
7 | 0.60 | 1.04 | 2.05 | 4.02 |
8 | 0.58 | 1.00 | 2.04 | 4.01 |
9 | 0.57 | 1.04 | 2.11 | 4.04 |
平均值 | 0.58 | 1.02 | 2.05 | 4.03 |
RSD/% | 2.45 | 1.57 | 1.72 | 0.37 |
Tab.2 The verification results of characterization method precision
序号 | 样品活性磷酸盐浓度测量结果/(μmol·L-1) | |||
---|---|---|---|---|
P1批次 | P2批次 | P3批次 | P4批次 | |
1 | 0.57 | 1.00 | 2.06 | 4.03 |
2 | 0.56 | 1.00 | 2.08 | 4.04 |
3 | 0.57 | 1.01 | 2.07 | 4.02 |
4 | 0.60 | 1.01 | 2.03 | 4.04 |
5 | 0.57 | 1.02 | 2.02 | 4.03 |
6 | 0.57 | 1.02 | 1.99 | 4.06 |
7 | 0.60 | 1.04 | 2.05 | 4.02 |
8 | 0.58 | 1.00 | 2.04 | 4.01 |
9 | 0.57 | 1.04 | 2.11 | 4.04 |
平均值 | 0.58 | 1.02 | 2.05 | 4.03 |
RSD/% | 2.45 | 1.57 | 1.72 | 0.37 |
批次 | 实测活性磷酸盐浓度 平均值/(μmol·L-1) | RSD/% | F值 |
---|---|---|---|
P1 | 0.57 | 1.89 | 1.37 |
P2 | 1.02 | 1.34 | 2.20 |
P3 | 2.05 | 0.91 | 2.01 |
P4 | 4.02 | 0.62 | 2.20 |
Tab.3 The results of homogeneity test
批次 | 实测活性磷酸盐浓度 平均值/(μmol·L-1) | RSD/% | F值 |
---|---|---|---|
P1 | 0.57 | 1.89 | 1.37 |
P2 | 1.02 | 1.34 | 2.20 |
P3 | 2.05 | 0.91 | 2.01 |
P4 | 4.02 | 0.62 | 2.20 |
批次 | β1 | s(β1) | t95,n-2×s(β1) |
---|---|---|---|
P1 | -1.797 7×10-5 | 5.661 8×10-5 | 1.455 6×10-4 |
P2 | 4.960 5×10-7 | 4.656 0×10-5 | 1.197 1×10-4 |
P3 | 5.209 6×10-5 | 5.645 7×10-5 | 1.451 5×10-4 |
P4 | -7.427 9×10-5 | 7.648 5×10-5 | 1.966 4×10-4 |
Tab.4 The results of long-term stability test
批次 | β1 | s(β1) | t95,n-2×s(β1) |
---|---|---|---|
P1 | -1.797 7×10-5 | 5.661 8×10-5 | 1.455 6×10-4 |
P2 | 4.960 5×10-7 | 4.656 0×10-5 | 1.197 1×10-4 |
P3 | 5.209 6×10-5 | 5.645 7×10-5 | 1.451 5×10-4 |
P4 | -7.427 9×10-5 | 7.648 5×10-5 | 1.966 4×10-4 |
环境 温度/℃ | 批次 | β1 | s(β1) | t95,n-2×s(β1) |
---|---|---|---|---|
-20 | P1 | -3.333 3×10-4 | 2.255 7×10-3 | 9.706 5×10-3 |
P2 | 5.000 0×10-3 | 2.343 6×10-3 | 1.008 4×10-2 | |
P3 | 2.333 3×10-3 | 2.934 5×10-3 | 1.262 7×10-2 | |
P4 | -5.000 0×10-3 | 2.345 9×10-3 | 1.008 4×10-2 | |
4 | P1 | -2.333 3×10-3 | 1.536 6×10-3 | 6.611 9×10-3 |
P2 | -6.000 0×10-3 | 2.335 5×10-3 | 1.005 0×10-2 | |
P3 | 2.333 3×10-3 | 1.968 8×10-3 | 8.471 8×10-3 | |
P4 | 4.000 0×10-3 | 3.503 2×10-3 | 1.507 4×10-2 | |
25 | P1 | -1.666 7×10-3 | 2.487 3×10-3 | 1.070 3×10-2 |
P2 | -3.333 3×10-3 | 2.940 9×10-3 | 1.265 5×10-2 | |
P3 | -1.333 3×10-3 | 3.073 2×10-3 | 1.322 4×10-2 | |
P4 | -2.333 3×10-3 | 3.805 6×10-3 | 1.637 5×10-2 | |
65 | P1 | -1.000 0×10-3 | 1.887 0×10-3 | 8.119 6×10-3 |
P2 | 0 | 3.107 9×10-3 | 1.337 3×10-2 | |
P3 | -1.000 0×10-3 | 3.936 0×10-3 | 1.693 7×10-2 | |
P4 | -3.333 3×10-4 | 3.689 3×10-3 | 1.587 5×10-2 |
Tab.5 The results of short-term stability test
环境 温度/℃ | 批次 | β1 | s(β1) | t95,n-2×s(β1) |
---|---|---|---|---|
-20 | P1 | -3.333 3×10-4 | 2.255 7×10-3 | 9.706 5×10-3 |
P2 | 5.000 0×10-3 | 2.343 6×10-3 | 1.008 4×10-2 | |
P3 | 2.333 3×10-3 | 2.934 5×10-3 | 1.262 7×10-2 | |
P4 | -5.000 0×10-3 | 2.345 9×10-3 | 1.008 4×10-2 | |
4 | P1 | -2.333 3×10-3 | 1.536 6×10-3 | 6.611 9×10-3 |
P2 | -6.000 0×10-3 | 2.335 5×10-3 | 1.005 0×10-2 | |
P3 | 2.333 3×10-3 | 1.968 8×10-3 | 8.471 8×10-3 | |
P4 | 4.000 0×10-3 | 3.503 2×10-3 | 1.507 4×10-2 | |
25 | P1 | -1.666 7×10-3 | 2.487 3×10-3 | 1.070 3×10-2 |
P2 | -3.333 3×10-3 | 2.940 9×10-3 | 1.265 5×10-2 | |
P3 | -1.333 3×10-3 | 3.073 2×10-3 | 1.322 4×10-2 | |
P4 | -2.333 3×10-3 | 3.805 6×10-3 | 1.637 5×10-2 | |
65 | P1 | -1.000 0×10-3 | 1.887 0×10-3 | 8.119 6×10-3 |
P2 | 0 | 3.107 9×10-3 | 1.337 3×10-2 | |
P3 | -1.000 0×10-3 | 3.936 0×10-3 | 1.693 7×10-2 | |
P4 | -3.333 3×10-4 | 3.689 3×10-3 | 1.587 5×10-2 |
批次 | 格拉布 斯检验 | 科克伦 检验 | 狄克逊 检验 | 正态分 布检验 | 总体平均值 /(μmol·L-1) | 总体SD /(μmol·L-1) |
---|---|---|---|---|---|---|
P1 | 通过 | 等精度 | 无离群值 | 通过 | 0.53 | 0.03 |
P2 | 通过 | 等精度 | 无离群值 | 通过 | 1.02 | 0.02 |
P3 | 通过 | 等精度 | 无离群值 | 通过 | 2.03 | 0.04 |
P4 | 通过 | 等精度 | 无离群值 | 通过 | 4.01 | 0.04 |
Tab.6 The results of raw data statistical test
批次 | 格拉布 斯检验 | 科克伦 检验 | 狄克逊 检验 | 正态分 布检验 | 总体平均值 /(μmol·L-1) | 总体SD /(μmol·L-1) |
---|---|---|---|---|---|---|
P1 | 通过 | 等精度 | 无离群值 | 通过 | 0.53 | 0.03 |
P2 | 通过 | 等精度 | 无离群值 | 通过 | 1.02 | 0.02 |
P3 | 通过 | 等精度 | 无离群值 | 通过 | 2.03 | 0.04 |
P4 | 通过 | 等精度 | 无离群值 | 通过 | 4.01 | 0.04 |
实验室 代号 | P1批次 | P2批次 | P3批次 | P4批次 | ||||
---|---|---|---|---|---|---|---|---|
平均值 | SD | 平均值 | SD | 平均值 | SD | 平均值 | SD | |
A | 0.56 | 0.005 | 1.02 | 0.014 | 2.03 | 0.008 | 4.03 | 0.015 |
B | 0.49 | 0.008 | 0.98 | 0.008 | 1.98 | 0.008 | 3.96 | 0.019 |
C | 0.52 | 0.013 | 1.03 | 0.015 | 2.08 | 0.010 | 4.06 | 0.010 |
D | 0.56 | 0.000 | 1.05 | 0.004 | 2.08 | 0.010 | 4.00 | 0.008 |
E | 0.50 | 0.009 | 1.02 | 0.009 | 2.00 | 0.008 | 3.98 | 0.027 |
F | 0.56 | 0.008 | 1.01 | 0.009 | 2.04 | 0.018 | 4.04 | 0.014 |
Tab.7
实验室 代号 | P1批次 | P2批次 | P3批次 | P4批次 | ||||
---|---|---|---|---|---|---|---|---|
平均值 | SD | 平均值 | SD | 平均值 | SD | 平均值 | SD | |
A | 0.56 | 0.005 | 1.02 | 0.014 | 2.03 | 0.008 | 4.03 | 0.015 |
B | 0.49 | 0.008 | 0.98 | 0.008 | 1.98 | 0.008 | 3.96 | 0.019 |
C | 0.52 | 0.013 | 1.03 | 0.015 | 2.08 | 0.010 | 4.06 | 0.010 |
D | 0.56 | 0.000 | 1.05 | 0.004 | 2.08 | 0.010 | 4.00 | 0.008 |
E | 0.50 | 0.009 | 1.02 | 0.009 | 2.00 | 0.008 | 3.98 | 0.027 |
F | 0.56 | 0.008 | 1.01 | 0.009 | 2.04 | 0.018 | 4.04 | 0.014 |
项目 | P1批次 | P2批次 | P3批次 | P4批次 |
---|---|---|---|---|
ubb | 0.006 | 0.011 | 0.014 | 0.019 |
ults | 0.021 | 0.017 | 0.021 | 0.028 |
uchar | 0.014 | 0.010 | 0.017 | 0.015 |
uCRM | 0.026 | 0.023 | 0.030 | 0.037 |
U(k=2) | 0.052 | 0.046 | 0.060 | 0.074 |
Urel(k=2) | 10% | 5% | 3% | 2% |
Tab.8
项目 | P1批次 | P2批次 | P3批次 | P4批次 |
---|---|---|---|---|
ubb | 0.006 | 0.011 | 0.014 | 0.019 |
ults | 0.021 | 0.017 | 0.021 | 0.028 |
uchar | 0.014 | 0.010 | 0.017 | 0.015 |
uCRM | 0.026 | 0.023 | 0.030 | 0.037 |
U(k=2) | 0.052 | 0.046 | 0.060 | 0.074 |
Urel(k=2) | 10% | 5% | 3% | 2% |
[1] |
HOWARTH R W. Nutrient limitation of net primary production in marine ecosystems[J]. Annual Review of Ecology and Systematics, 1988, 19: 89-110.
DOI URL |
[2] |
LE MOAL M, GASCUEL-ODOUX C, MÉNESGUEN A, et al. Eutrophication: A new wine in an old bottle[J]. Science of the Total Environment, 2019, 651: 1-11.
DOI URL |
[3] |
BENNETT E M, CARPENTER S R, CARACO N F. Human impact on erodable phosphorus and eutrophication: A global perspective[J]. BioScience, 2001, 51(3): 227.
DOI URL |
[4] |
MAHER W, WOO L. Procedures for the storage and digestion of natural waters for the determination of filterable reactive phosphorus, total filterable phosphorus and total phosphorus[J]. Analytica Chimica Acta, 1998, 375(1/2): 5-47.
DOI URL |
[5] |
ROBARDS K, MCKELVIE I D, BENSON R L, et al. Determination of carbon, phosphorus, nitrogen and silicon species in waters[J]. Analytica Chimica Acta, 1994, 287(3): 147-190.
DOI URL |
[6] |
JARVIE H P, WITHERS J A, NEAL C. Review of robust measurement of phosphorus in river water: Sampling, storage, fractionation and sensitivity[J]. Hydrology and Earth System Sciences, 2002, 6(1): 113-131.
DOI URL |
[7] | 国家质量监督检验检疫总局, 国家标准化管理委员会. 海洋调查规范第4部分:海水化学要素调查:GB/T 12763.4—2007[S]. 北京: 中国标准出版社, 2007. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization administration. Specifications for oceanographic survey—Part 4: Survey of chemical parameters in sea water: GB/T 12763.4—2007[S]. Beijing: Standards Press of China, 2007. | |
[8] | 国家质量监督检验检疫总局, 国家标准化管理委员会. 海洋监测规范第4部分:海水分析: GB 17378.4—2007[S]. 中国标准出版社, 2008. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization administration. The specification for marine monitoring—Part 4: Seawater analysis: GB 17378.4—2007[S]. Beijing: Standards Press of China, 2008. | |
[9] |
王丽芳, 黄韬, 杜川军, 等. 不同海水营养盐现场连续观测系统的比较研究[J]. 热带海洋学报, 2021, 40(3):103-113.
DOI |
WANG L F, HUANG T, DU C J, et al. Comparison of different continuous in situ observation systems in seawater[J]. Journal of Tropical Oceanography, 2021, 40(3):103-113. | |
[10] |
CHOQUETTE S J, DUEWER D L, SHARPLESS K E. NIST reference materials: Utility and future[J]. Annual Review of Analytical Chemistry, 2020, 13: 453-474.
DOI URL |
[11] | 卢晓华, 薄梦, 吴雪, 等. 标准物质领域发展现状及趋势[J]. 化学试剂, 2022, 44(10):1403-1410. |
LU X H, BO M, WU X, et al. Current situation and trends on the development of reference materials[J]. Chemical Reagents, 2022, 44(10): 1403-1410. | |
[12] | 朱勇, 施晓来, 刘强, 等. 海水营养盐标准物质的研制和发展[J]. 海洋开发与管理, 2018, 35(6):30-33. |
ZHU Y, SHI X L, LIU Q, et al. Current status and development of a certified reference material for nutrients in seawater[J]. Ocean Development and Management, 2018, 35(6): 30-33. | |
[13] | AOYAMA M, ABAD M, LUDWICHOWSKI K U, et al. IOCCP-JAMSTEC 2015 inter-laboratory calibration exercise of a certified reference material for nutrients in seawater[M]. Yokosuka: Japan Agency for Marine-Earth Science and Technology, 2016. |
[14] | 徐燕青, 高生泉, 陈建芳, 等. 氢氧化镁共沉淀法测定海水中纳摩尔级活性磷酸盐[J]. 分析化学, 2011, 39(1):133-136. |
XU Y Q, GAO S Q, CHEN J F, et al. Determination of reactive phosphate in nanomolar level in sea water with Mg(OH)2 Co-precipitation[J]. Chinese Journal of Analytical Chemistry, 2011, 39(1): 133-136. | |
[15] |
MURPHY J, RILEY J P. A modified single solution method for the determination of phosphate in natural waters[J]. Analytica Chimica Acta, 1962, 27: 31-36.
DOI URL |
[16] |
CHEN Y L L, CHEN H Y. Seasonal dynamics of primary and new production in the northern South China Sea: The significance of river discharge and nutrient advection[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(6): 971-986.
DOI URL |
[17] |
LIANG Y, YUAN D X, LI Q L, et al. Flow injection analysis of nanomolar level orthophosphate in seawater with solid phase enrichment and colorimetric detection[J]. Marine Chemistry, 2007, 103(1/2): 122-130.
DOI URL |
[18] |
MA J, YUAN D X, LIANG Y. Sequential injection analysis of nanomolar soluble reactive phosphorus in seawater with HLB solid phase extraction[J]. Marine Chemistry, 2008, 111(3/4): 151-159.
DOI URL |
[19] |
YUAN Y, WANG S, YUAN D X, et al. A simple and cost-effective manual solid phase extraction method for the determination of nanomolar dissolved reactive phosphorus in aqueous samples[J]. Limnology and Oceanography: Methods, 2016, 14(2): 79-86.
DOI URL |
[20] | 国家市场监督管理总局. 标准物质的定值及均匀性、稳定性评估: JJF 1343—2022[S]. 北京: 中国标准出版社, 2022. |
State Administration for Market Regulation. Characterization, homogeneity and stability assessment of reference materials: JJF 1343—2022[S]. Beijing: Standards Press of China, 2022. | |
[21] |
BECKER S, AOYAMA M, WOODWARD E M S, et al. GO-SHIP repeat hydrography nutrient manual: The precise and accurate determination of dissolved inorganic nutrients in seawater, using continuous flow analysis methods[J]. Frontiers in Marine Science, 2020, 7: 581790.
DOI URL |
[22] |
PAI S C, YANG C C, RILEY J P. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex[J]. Analytica Chimica Acta, 1990, 229: 115-120.
DOI URL |
[23] |
ZHANG J Z, FISCHER C J, ORTNER P B. Continuous flow analysis of phosphate in natural waters using hydrazine as a reductant[J]. International Journal of Environmental Analytical Chemistry, 2001, 80(1): 61-73.
DOI URL |
[24] |
LEVINE H, ROWE J J, GRIMALDI F S. Molybdenum blue reaction and determination of phosphours in waters containing arsenic, silicon, and germanium[J]. Analytical Chemistry, 1955, 27(2): 258-262.
DOI URL |
[25] |
DRUMMOND L, MAHER W. Determination of phosphorus in aqueous solution via formation of the phosphoantimon-ylmolybdenum blue complex. Re-examination of optimum conditions for the analysis of phosphate[J]. Analytica Chimica Acta, 1995, 302(1): 69-74.
DOI URL |
[1] | LIU Qiang, SHI Xiaolai, LÜ Haiyan, ZHU Yong, WU Bin. Preparation of standard reference material for heavy metals in low salinity seawater [J]. Journal of Marine Sciences, 2020, 38(3): 76-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||